Assignment 4

Maxime CHAMBREUIL
McGill ID: 260067572 maxime.chambreuil@mail.mcgill.ca

Contents

1 Exercise 1: Likelihood weighting 1
2 Exercise 2 : Markov Chain 2
2.1 From 0 to 0 in n steps 2
2.2 From 0 to 1 in n steps 2
2.3 From 1 or 2 to 0 2
2.4 From 1 to 1 in n steps 2
2.5 From 1 to 2 in n steps 3
2.6 Transition probability matrix 3
3 Exercise 3 : Gibbs sampling 3
4 Exercise 4 : Gibbs sampling 3
4.1 With deterministic exclusive OR 3
4.2 With slightly noisy exclusive OR 4
5 Exercise 5 : Parameter estimation in Bayes nets 4
6 Exercise 6 : Maximum Likelihood Estimation 4
6.1 Likelihood of λ 4
6.2 Derivation of the likelihood 5
6.3 Relation between λ_{n} and λ_{n+1} 5
7 Exercise 7 : Learning Bayes net structure 5
7.1 Relationship between B_{1} and B_{2} 5
7.2 Consequences 5

1 Exercise 1: Likelihood weighting

Let's take an ordering of the variables consistent with the arc direction in the Bayes net structure: A, B, C, D, E.

To generate the first sample, we assume that $\mathrm{w}=1$.

- A has not been observed so we can sample it directly: $\mathrm{A}=1$
- B has not been observed and as $p(B=1 / A=1)=0,8$, we can sample $B=1$
- C has been observed: $C=1$ and the new $w=p(C=1 / A=1)=0,6$
- D has been observed: $D=1$ and the new $w=w \times p(D=1 / B=1, C=1)=0,6 \times 1=0,6$
- E has not been observed and as $p(E=1 / D=1)=0,8$, we can sample $E=1$

We finally obtained our first sample: $(A=1, B=1, C=1, D=1, E=1)$ with a $w=0,6$.

To generate the second sample, we assume that $\mathrm{w}=1$.

- A has not been observed so we can sample it directly: $\mathrm{A}=0$
- B has not been observed and as $p(B=0 / A=0)=0,8$, we can sample $B=0$
- C has been observed: $C=1$ and the new $w=p(C=1 / A=0)=0,3$
- D has been observed: $D=1$ and the new $w=w \times p(D=1 / B=0, C=1)=0,3 \times 0=0$
- E has not been observed and as $p(E=0 / D=1)=0,8$, we can sample $E=0$

We finally obtained our second sample: $(A=0, B=0, C=1, D=1, E=0)$ with a $w=0$.

The likelihood weighting will encounter a problem in this network: as we have seen in the second sample, we have a sample with zero as a weight, which is not really useful. This problem is due to the deterministic AND in the V-structure.

2 Exercise 2: Markov Chain

2.1 From 0 to 0 in \mathbf{n} steps

To go from state 0 to state 0 in n steps, we have to keep staying in this state, as we cannot go to state 0 from 1 or 2 .

Therefore, we have:

$$
p_{00}^{(n)}=\left(\frac{1}{2}\right)^{n}
$$

2.2 From 0 to $\mathbf{1}$ in \mathbf{n} steps

To go from state 0 to state 1 in n steps, we can stay in state 0 during m steps, then we can move to state 1 , then move to state 2 , stay there p steps and come back to state 1 q times, or stay until the end in state 1.

Therefore, we have:

$$
p_{01}^{(n)}=\left(\frac{1}{2}\right)^{m} \times \frac{1}{4} \times\left(\frac{1}{2}\right)^{q} \times\left(\frac{1}{2}\right)^{p} \times\left(\frac{1}{2}\right)^{q} \times\left(\frac{1}{2}\right)^{n-m-1-p-2 q}=\left(\frac{1}{2}\right)^{n+1}
$$

You can obtain $p_{02}^{(n)}=\left(\frac{1}{2}\right)^{n+1}$ with the same method.

2.3 From 1 or 2 to 0

As we cannot go to state 0 from any other states, $p_{10}^{(n)}=p_{20}^{(n)}=0$

2.4 From 1 to 1 in \mathbf{n} steps

To go from state 1 to state 1 in n steps, we can stay in state 1 during m steps, then we can move to state 2 , stay there p steps and come back to state 1 .

Therefore, we have:

$$
p_{11}^{(n)}=\left(\frac{1}{2}\right)^{m} \times\left(\frac{1}{2}\right)^{\frac{n-m-p}{2}} \times\left(\frac{1}{2}\right)^{p} \times\left(\frac{1}{2}\right)^{\frac{n-m-p}{2}}=\left(\frac{1}{2}\right)^{n}
$$

You can obtain $p_{22}^{(n)}=\left(\frac{1}{2}\right)^{n}$ with the same method.

2.5 From 1 to 2 in \mathbf{n} steps

To go from state 1 to state 2 in n steps, we can stay in state 1 during m steps, then we can do p loops (state 1 , state 2 , state 1), stay in state 2 until n-th steps.

Therefore, we have:

$$
p_{12}^{(n)}=\left(\frac{1}{2}\right)^{m} \times\left(\frac{1}{2}\right)^{2 p} \times\left(\frac{1}{2}\right)^{n-m-2 p}=\left(\frac{1}{2}\right)^{n}
$$

You can obtain $p_{21}^{(n)}=\left(\frac{1}{2}\right)^{n}$ with the same method.

2.6 Transition probability matrix

$$
\left[\begin{array}{ccc}
\left(\frac{1}{2}\right)^{n} & \left(\frac{1}{2}\right)^{n+1} & \left(\frac{1}{2}\right)^{n+1} \\
0 & \left(\frac{1}{2}\right)^{n} & \left(\frac{1}{2}\right)^{n} \\
0 & \left(\frac{1}{2}\right)^{n} & \left(\frac{1}{2}\right)^{n}
\end{array}\right]
$$

3 Exercise 3: Gibbs sampling

4 Exercise 4 : Gibbs sampling

4.1 With deterministic exclusive OR

To show that Gibbs sampling on the structure with evidence $Z=1$ will estimate p ($X=1 / Z$ $=1)$ as either 1 or 0 , let us take a look at the application of the algorithm:

To initialize, we can pick a random sample ($\mathrm{X}=0, \mathrm{Y}=1, \mathrm{Z}=1$) and repeat the following procedure:

- Pick a non-evidence variable: X
- Sample x from $p(x / y, z): p(X=1 / Y=1, Z=1)=0$ so we obtain a new sample $(X=1$ $, \mathrm{Y}=1, \mathrm{Z}=1$)
we can also do it with Y :
- Pick a non-evidence variable: Y
- Sample x from $p(y / x, z): p(Y=0 / X=1, Z=1)=1$ so we obtain a new sample $(X=1$, $\mathrm{Y}=0, \mathrm{Z}=1$)

Let's do it another time with X :

- Pick a non-evidence variable: X
- Sample x from $p(x / y, z): p(X=1 / Y=0, Z=1)=1$ so we obtain the previous sample.

You can notice that Gibbs sampling on the structure with evidence $Z=1$ estimates p ($X=1 / Z$ $=1)$ as either 1 or 0 .

4.2 With slightly noisy exclusive OR

We can repeat the previous algorithm with the same sample, and the change would be in the computation of the probability.

5 Exercise 5 : Parameter estimation in Bayes nets

Let us consider a simple V-structure: $X \rightarrow Z \leftarrow Y$, where X can take n different values, Y p values and Zq values.

Given x and y, Z can take any one of his q possible values with a probability distribution depending on x and y.

With this representation, it is easy to see that each probability distribution of $p(Z / X, Y)$ is independent with the other.

6 Exercise 6 : Maximum Likelihood Estimation

6.1 Likelihood of λ

$$
\begin{aligned}
L(\lambda / D) & =\prod_{j=1}^{m} p\left(x_{j} / \lambda\right) \\
& =\prod_{j=1}^{m} e^{-\lambda} \frac{\lambda^{x_{j}}}{x_{j}!}
\end{aligned}
$$

$$
=e^{-m \lambda} \prod_{j=1}^{m} \frac{\lambda^{x_{j}}}{x_{j}!}
$$

6.2 Derivation of the likelihood

$$
\begin{aligned}
\log L(\lambda / D) & =-m \lambda+\sum_{j=1}^{m} \log \left(\frac{\lambda^{x_{j}}}{x_{j}!}\right) \\
\frac{\partial[\log L(\lambda / D)]}{\partial \lambda} & =-m+\sum_{j=1}^{m} \frac{x_{j}}{\lambda}=0 \Rightarrow \lambda=\frac{\sum_{j=1}^{m} x_{j}}{m}
\end{aligned}
$$

We have obtained the average of x_{j}, so the sufficient statistic of the data in this case is the mean of the data.

6.3 Relation between λ_{n} and λ_{n+1}

$$
\begin{aligned}
\lambda_{n+1} & =\frac{1}{n+1} \sum_{j=1}^{n+1} x_{j} \\
& =\frac{1}{n+1} \sum_{j=1}^{n} x_{j}+\frac{1}{n+1} \times x_{n+1} \\
& =\frac{n}{n+1} \times \frac{1}{n} \sum_{j=1}^{n} x_{j}+\frac{1}{n+1} \times x_{n+1} \\
& =\frac{n}{n+1} \lambda_{n}+\frac{x_{n+1}}{n+1} \\
& =\frac{n \lambda_{n}+x_{n+1}}{n+1}
\end{aligned}
$$

7 Exercise 7 : Learning Bayes net structure

7.1 Relationship between B_{1} and B_{2}

If we have an additional arc in B_{2} compared to B_{1}, it means that there will be an extra term in the computation of the likelihood of the network. So the likelihood of B_{2} will be greater than the one of B_{1}.

7.2 Consequences

It means that more we add arc, better the network will be scored. So we will obtain a fully connected graph, which will overfit the data and will be really bad with new samples.

