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1 Exercise 1 : Likelihood weighting

Let’s take an ordering of the variables consistent with the arc direction in the Bayes net struc-
ture: A, B, C, D, E.

To generate the first sample, we assume that w = 1.

• A has not been observed so we can sample it directly: A = 1

• B has not been observed and as p ( B = 1 / A = 1 ) = 0,8, we can sample B = 1

• C has been observed: C = 1 and the new w = p ( C = 1 / A = 1 ) = 0,6

• D has been observed: D = 1 and the new w = w × p ( D = 1 / B = 1 , C = 1 ) = 0, 6× 1 = 0,6

• E has not been observed and as p ( E = 1 / D = 1 ) = 0,8, we can sample E = 1
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We finally obtained our first sample: ( A = 1 , B = 1 , C = 1 , D = 1 , E = 1 ) with a w = 0,6.

To generate the second sample, we assume that w = 1.

• A has not been observed so we can sample it directly: A = 0

• B has not been observed and as p ( B = 0 / A = 0 ) = 0,8, we can sample B = 0

• C has been observed: C = 1 and the new w = p ( C = 1 / A = 0 ) = 0,3

• D has been observed: D = 1 and the new w = w × p ( D = 1 / B = 0 , C = 1 ) = 0, 3× 0 = 0

• E has not been observed and as p ( E = 0 / D = 1 ) = 0,8, we can sample E = 0

We finally obtained our second sample: ( A = 0 , B = 0 , C = 1 , D = 1 , E = 0 ) with a w = 0.

The likelihood weighting will encounter a problem in this network: as we have seen in the
second sample, we have a sample with zero as a weight, which is not really useful. This problem
is due to the deterministic AND in the V-structure.

2 Exercise 2 : Markov Chain

2.1 From 0 to 0 in n steps

To go from state 0 to state 0 in n steps, we have to keep staying in this state, as we cannot go
to state 0 from 1 or 2.

Therefore, we have:

p
(n)
00 =

(
1
2

)n

2.2 From 0 to 1 in n steps

To go from state 0 to state 1 in n steps, we can stay in state 0 during m steps, then we can move
to state 1, then move to state 2, stay there p steps and come back to state 1 q times, or stay until
the end in state 1.

Therefore, we have:

p
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01 =

(
1
2
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× 1
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×
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)n−m−1−p−2q

=
(
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)n+1

You can obtain p
(n)
02 =

(
1
2

)n+1 with the same method.

2.3 From 1 or 2 to 0

As we cannot go to state 0 from any other states, p
(n)
10 = p

(n)
20 = 0

2.4 From 1 to 1 in n steps

To go from state 1 to state 1 in n steps, we can stay in state 1 during m steps, then we can move
to state 2, stay there p steps and come back to state 1.
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Therefore, we have:

p
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You can obtain p
(n)
22 =

(
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)n with the same method.

2.5 From 1 to 2 in n steps

To go from state 1 to state 2 in n steps, we can stay in state 1 during m steps, then we can do p
loops ( state 1, state 2, state 1), stay in state 2 until n-th steps.

Therefore, we have:
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You can obtain p
(n)
21 =

(
1
2

)n with the same method.

2.6 Transition probability matrix
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3 Exercise 3 : Gibbs sampling

4 Exercise 4 : Gibbs sampling

4.1 With deterministic exclusive OR

To show that Gibbs sampling on the structure with evidence Z = 1 will estimate p ( X = 1 / Z
= 1 ) as either 1 or 0, let us take a look at the application of the algorithm:

To initialize, we can pick a random sample ( X = 0 , Y = 1 , Z = 1 ) and repeat the following
procedure:

• Pick a non-evidence variable: X

• Sample x from p ( x / y , z ): p ( X = 1 / Y = 1 , Z = 1 ) = 0 so we obtain a new sample ( X = 1
, Y = 1 , Z = 1 )

we can also do it with Y:

• Pick a non-evidence variable: Y

• Sample x from p ( y / x , z ): p ( Y = 0 / X = 1 , Z = 1 ) = 1 so we obtain a new sample ( X = 1
, Y = 0 , Z = 1 )

Let’s do it another time with X:

• Pick a non-evidence variable: X

• Sample x from p ( x / y , z ): p ( X = 1 / Y = 0 , Z = 1 ) = 1 so we obtain the previous sample.
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You can notice that Gibbs sampling on the structure with evidence Z = 1 estimates p ( X = 1 / Z
= 1 ) as either 1 or 0.

4.2 With slightly noisy exclusive OR

We can repeat the previous algorithm with the same sample, and the change would be in the
computation of the probability.

5 Exercise 5 : Parameter estimation in Bayes nets

Let us consider a simple V-structure: X → Z ← Y , where X can take n different values, Y p
values and Z q values.

Given x and y, Z can take any one of his q possible values with a probability distribution de-
pending on x and y.

(x,y) z

p(Z=z/X=x,Y=y)

p(X=x,Y=y)

With this representation, it is easy to see that each probability distribution of p(Z/X,Y) is inde-
pendent with the other.

6 Exercise 6 : Maximum Likelihood Estimation

6.1 Likelihood of λ

L(λ/D) =
m∏

j=1

p(xj/λ)

=
m∏

j=1

e−λ λxj

xj !
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= e−mλ
m∏

j=1

λxj

xj !

6.2 Derivation of the likelihood

logL(λ/D) = −mλ +
m∑

j=1

log

(
λxj

xj !

)

∂ [logL(λ/D)]
∂λ

= −m +
m∑

j=1

xj

λ
= 0 ⇒ λ =

∑m
j=1 xj

m

We have obtained the average of xj , so the sufficient statistic of the data in this case is the mean
of the data.

6.3 Relation between λn and λn+1

λn+1 =
1

n + 1

n+1∑

j=1

xj

=
1

n + 1

n∑

j=1

xj +
1

n + 1
× xn+1

=
n

n + 1
× 1

n

n∑

j=1

xj +
1

n + 1
× xn+1

=
n

n + 1
λn +

xn+1

n + 1

=
nλn + xn+1

n + 1

7 Exercise 7 : Learning Bayes net structure

7.1 Relationship between B1 and B2

If we have an additional arc in B2 compared to B1, it means that there will be an extra term in
the computation of the likelihood of the network. So the likelihood of B2 will be greater than the
one of B1.

7.2 Consequences

It means that more we add arc, better the network will be scored. So we will obtain a fully
connected graph, which will overfit the data and will be really bad with new samples.
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