## Assignment 2

## Maxime CHAMBREUIL <br> McGill ID: 260067572 maxime.chambreuil@mail.mcgill.ca

## Contents

1 Exercise 1: Bayes Ball 1
2 Exercise 2: Variable Elimination 1
2.1 Eliminate A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.2 Eliminate B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.3 Eliminate E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.4 Eliminate C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.5 Eliminate D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Exercise 3 : Directed vs Undirected models 3
3.1 Model A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Model B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

4 Exercise $4:$ Undirected models 4
5 Exercise $5:$ Junction Tree 4
6 Exercise $6:$ Clique trees 6
7 Exercise 7 : I-Maps 7

## 1 Exercise 1: Bayes Ball

Nodes F and G are reachable from A, given the evidence. As we don't know F, we cannot go to B.

## 2 Exercise 2 : Variable Elimination

Elimination order list: A, B, E, C, D.
Original active factor list: $p(A), p(B), p(E / C), p(C / A, B), p(D / C)$

### 2.1 Eliminate A

$$
m_{A}(B, C)=\sum_{a} p(a) p(c / a, b)=p(C / B)
$$

Factor list: p (B), p (E/C ), p(D/C ), $m_{A}(B, C)$

### 2.2 Eliminate B

$$
m_{B}(C)=\sum_{b} p(b) m_{A}(b, c)=p(C)
$$

Factor list: p ( E / C ), p (D / C ), $m_{B}(C)$

### 2.3 Eliminate E

$$
m_{E}(C)=\sum_{e} p(e / c)=1
$$

Factor list: p ( D / C ), $m_{B}(C), m_{E}(C)$

### 2.4 Eliminate C

$$
m_{C}(D)=\sum_{c} p(d / c) m_{B}(c) m_{E}(c)=p(D)
$$

Factor list: $m_{C}(D)$

### 2.5 Eliminate D

$$
m_{D}=\sum_{d} m_{c}(d)=1
$$

Factor list: $m_{D}$

As you can see, the variable E is relevant in the computation of $\mathrm{p}(\mathrm{D})$ : we wouldn't get the same result if we didn't take into account the variable E.

## 3 Exercise 3 : Directed vs Undirected models

### 3.1 Model A

The model implies that $B$ and $C$ are independent given $A$.


Figure 1: Undirected model

### 3.2 Model B

The model implies that $B$ and $C$ are independent given $A$.


Figure 2: Undirected model

## 4 Exercise 4 : Undirected models

To capture any joint distribution between any couples of 2 nodes, we need a fully connected graph: with an arc between any 2 nodes. The maximal clique contains all the nodes $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D.


Figure 3: Undirected model

To know how many edges we need to connect n nodes, let us imagine that we have a matrix n by n , where the intersection tells us that there can be an edge between variable i and variable j. We wouldn't need half of the matrix as the model is undirected. In the $\frac{n^{2}}{2}$ other possibilities, we have to remove the diagonal, which contains arcs from ito We finally need $\frac{n^{2}}{2}-n$ edges to capture any joint distribution, if we have $n$ variables.

## 5 Exercise 5 : Junction Tree



Figure 4: Moralized Graph


Figure 5: Triangulated Graph

ROUEN


Figure 6: Junction Tree

## 6 Exercise 6: Clique trees

In the new network, at least we keep the clique size at k . Let us now consider that the maximum clique size in the new network is $\mathrm{k}+2$. We would have for $\mathrm{k}=3$ :


Figure 7: New network with $\mathrm{k}=3+2$

When we add the red arc to add nodes $X$ and $Y$ to the clique 1, we obtain a maximum clique of $\mathrm{k}=\mathrm{k}+2$, but the previous maximum clique size was not 3 . Indeed Y can be added to the clique 1 in order to form a bigger clique, which the size would be 4 .

With this simple eample, we can show that by adding one arc to a network, the maximum clique size can only be incremented by one.

## 7 Exercise 7 : I-Maps

By reversing the arc from BA to AB , we losintroduce the conditional independency between $E$ and $B$ given A. With adding an arc from E to B, we ensure that the new network is an I-map of the original one.


Figure 8: I-map

