
ARTICLES

Artificial
Intelligence and
Language Processing

Peter Friedland
Editor

Integer Programming
vs. Expert Systems:
An Experimental
Comparison
Expert system and integer programming formulations of an NP-complete
constraint satisfaction problem are contrasted in terms of performance,
ability to encode complex preferences, control of reasoning, and supporting
incremental modification of solutions in response to changing input data.

Vasant Dhar and Nicky Ranganathan

Virtually all decision making situations involve con-
straints. What distinguishes various types of problems is
the form of these constraints. Depending on how the
problem is visualized, they can arise as rules, data de-
pendencies, algebraic expressions, or other forms.

Constraint satisfaction problems (CSPs) have been
studied extensively in the operations research (OR) and
artificial intelligence (AI) literature. In OR formulations
constraints are quantitative, and the solver (such as the
Simplex algorithm) optimizes (maximizes or minimizes)
the value of a specified objective function subject to
the constraints. In contrast, AI research has focused on
inference-based approaches with mostly symbolic con-
straints. The inference mechanisms employed include
theorem provers, production rule interpreters, and var-
ious labeling procedures such as those used in truth
maintenance systems.

where the elements c,, c2, . . . , c,, are elements of a row
vectorc,x,,x,,x, ,..., xn are elements of a column
vector x, and n(c) is the number of negative elements
in c. Each Ci is 1, 0, or -1, indicating whether Xi ap-
pears, does not appear, or lx{ appears in the clause
respectively. The above notation is from Hooker [B].

In concrete terms, the symbolic/quantitative equiva-
lence means that many constraint satisfaction problems
can in principle be modeled using symbolic inference
techniques employed in expert systems or the quantita-
tive techniques of OR. In practice, there are pros and
cons to both approaches. One of our objectives has been
to study the tradeoffs involved in detail.

It has been apparent for some time that there is a
close relationship between logical and quantitative in-
ference. Dantzig [2] showed how logical propositions
could be expressed quantitatively using Boolean vari-
ables together with algebraic operators. In this way,
symbolic constraints can be modeled in terms of an
integer programming formulation. For example, the
constraint 1x1, x2 + x3 is equivalent to the clause “x1 or
not-x2 or x3” where each x; is a propositional variable. A
clause can be expressed as an inequality; the above
clause is equivalent to

Over the last year, several researchers of the Reason-
ing Architectures group at the Microelectronics and
Computer Technology Corporation (MCC) Artificial In-
telligence Laboratory have collaborated with an experi-
enced department head at the University of Texas in
analyzing the problem of planning the assignment of
faculty to courses, and revising plans as assumptions
(about faculty availability and enrollments) change.
The problem is of interest for several reasons. It charac-
terizes many types of planning problems where solu-
tions are assumption based or defeasible and must be
revised in light of a changing reality. The problem also
involves a diverse variety of constraints, making it a
good canonical problem for analyzing different model-
ing approaches.

x1 + (1 - x2) + XJ 2 1

where the truth values true and false are denoted by 1
and 0, respectively. In general, as has been noted inde-
pendently by Hinton [7] and Hooker [8], a clause can
be expressed as the following inequality:

c,x1+ ..’ + cnxn 2 1 - n(c)

01990ACMOOOl-0782/90/0300-0323 51.50

Based on an extensive knowledge engineering effort
over the last year, an expert system has been built and
implemented in PROTEUS [14]. The expert system
(called RACS-Revisable Academic Course Scheduler)
consists of a heuristic rule-based problem solver, which
contains the expert’s knowledge, and a truth mainte-
nance system (TMS), which maintains a contradiction-
free database of assignments.

In this article, we present an integer programming

March 1990 Volume 33 Number 3 Communications of the ACM 323

Articles

formulation corresponding to the expert system and re-
port on our experiences with running this model. We
are interested in studying whether the integer program-
ming model can provide the results that derive from
the reasoning process of the expert, whether it can be
modified easily to accommodate changes, and how gen-
eral purpose integer programming techniques do in
terms of computational performance.

The remainder of this article is organized as follows.
In the next section we provide a mathematical formula-
tion of the problem and describe its general structure.
This is followed by a description of the problem-solver/
TMS architecture that constitutes the expert system.
We then describe the architectural components of the
IP implementation and analyze the results from run-
ning this model, com.paring them with an expert’s deci-
sions when presented with the same problem data. In
doing so, we classify some of the limitations of the
mathematical model and describe why the problem-
solver/TM!3 combination does not suffer from these
problems (although it has other drawbacks). We con-
clude with a list of short- and long-term issues that
must be addressed in order to design more expressive
and flexible reasoning systems.

THE INTEGER PROGRAMMING FORMULATION
Generating a course schedule requires assigning faculty
to courses while taking into consideration a variety of
constraints and preferences. Constraints pertain to
bounds on the number of sections of courses, minimal
faculty teaching requirements, dependencies (i.e.,
whoever teaches “lnr’roduction to Logic” must also teach
“Advanced Logic”), etc:. Preferences are expressed by
teachers for desired courses and alternatives. In addi-
tion, the scheduler [chairman) expresses preferences in
deciding how to deal with conflicts that arise in synthe-
sizing the plan. After courses have been assigned, class
rooms and times are scheduled. We do not deal with
the latter problem in this article.

The structure of the problem data is presented in
Figure 1. There are three classes of data involved:
teacher, course, and term. There are three types of
teachers (three subclasses), each with specific in-
stances. Likewise, there are two types of courses and
instances of these two types, and two terms-fall and
spring. Constraints are defined at all levels of abstrac-
tion, in terms of the various classes and instances.

The formulation of the problem we present is based
on a detailed problem description that appears in Petrie
et al. [12]. Many of the constraints in the IP formulation
have been derived from the rules in the expert system.
The IP formulation is best presented by first defining all
subscripts, variables, and coefficients, followed by the
constraints and objec:tive function.

Subscripts
i=1,2
j=1,2:::::

n instructors
m courses

t = 1, 2 terms (fall or spring)
k=l,Z..., p categories of courses (for balancing

curriculum)

324 Communications of the ACM

Variables

-I

1
Xijf =

if faculty i is assigned to course j in term t
0 otherwise

Coefficients
pj = load factor of course j (depending on its size

and type)
T; = teaching load requirement (TL) for teacher i

Ibj, = lower bound on sections of course j to be
taught in term t

ub,, = upper bound on sections of course ,i to be
taught in term t

Ib, = lower bound on total sections of course j to be
taught in year

Ubj = upper bound on total sections of course j to be
taught in year

yj = number of sections of course j to be taught in
the entire year

G, = the number of graduate level course:; normally
offered during term t

c;,~ = cost of assigning teacher i to course j in term t.

This can take on three values:

I

0 if course j is desired by
faculty i in term f

M, a small number if j is an explicit alterna-
tive

“jr = Z, a large number if j is an implicit alterna-
tive or

if faculty i can teach
course j in term f, # f

Actually, another number is added to the value of c to
incorporate the flexibility of a teacher in terms of his
capability and propensity to teach alternative courses.
Specifically, teachers are ranked on a scale of 1 to 5
(both inclusive) where a 1 expresses least flexibility.
The combined number is the cost c0efficiec.t and ex-
presses a “penalty” associated with assigning faculty i to
course j in term t. We shall discuss this further shortly.

if j is a graduate level course
otherwise

if j is an upper division course
otherwise

if j is a lower division course
otherwise

if j is a writing course
otherwise

if i is a faculty member
otherwise

if course j is in category k
otherwise

if course j is proposed as a tutclrial
by i in term t
otherwise

if course j has the A-B sequence
otherwise

March 1990 Volume 3.3 Number 3

Articles

0 Object

Course

M&x S&tre Jones Smith Dhar Ni‘cky Phl 382 Ph‘l386 I Fall187 Fail-88 S&-87 Sir-88

Phl301 Phl305

Phl304 Phl358

FIGURE 1. Data Hierarchy

Constraints
1. Number of teachers assigned to a course in each

term should be between the lower and upper bounds
on the number of sections of that course:

for15jSm, andt=1,2

2. The total number of sections of course j taught in
the year should be:

for 1 5 j 5 m, and t = 1, 2

3. Each teacher must satisfy some minimal teaching
load:

m
2 PjXijt 2 Ti
,=1

for i = 1, 2, . . . , n, and t = 1, 2

4. Only professors can teach graduate courses:

Xtjl 5 1 - (1 - fi)gj

fori=1,2 ,..., n, forj=1,2 ,..., m andt=1,2

5. No professor can teach more than G graduate
courses per year:

2 i Xr,tgj 5 G for i = 1, 2, . . , ?I
,=I 1=1

6. Course sequence continuity (A-B) constraint:

ABj(Xij2 - Xijl) 5 0

for i = 1, 2, , n, and j = 1, 2, . . . , m

Constraint 6 says that someone can only teach a B

course in spring if they taught the A course in the fall.
If someone must teach the B course if they taught the A

course in fall, the inequality must be changed to an
equality.

7. There must be at least U upper division writing
courses offered each term:

“!
C XijfW,U, 2 U

,=I

for i = 1, 2, . . , n and t = 1, 2

Similar constraints are formulated for lower division
writing courses and the number of graduate courses
that must be offered each term.

March 1990 Volume 33 Number 3 Communications of the ACM 325

Articles

Objective Function
A variety of objective functions can be formulated for
this problem depending on the primary goal. One rea-
sonable goal is to maximize fit, or minimize deviations
from teachers’ desired courses. To express this, the ob-
jective function is:

Minimize z = i 5 i CirrXiit
i=l 1-1 t-1

This objective function states that the good of the many
outweights the good of the few.

Problem Structure
If one considers courses as “producing” sections for
which there are maximum and minimum supplies (ca-
pacities) and teachers as “demand” points, the problem
can be viewed as a transportation problem. In fact, with
constraints 1 and 2 are the objective function, the prob-
lem is a classical transportation problem. This problem
has a nice property in that it produces an integer solu-
tion for integer inpuis. Thus the problem of fractional
assignments does not arise.

Unfortunately, the third constraint, relating course
load factors to teaching load requirements, is a knap-
sack problem constraint (see page 65 of Garey and John-
son [6] for a description of this problem). This destroys
the integer solution property. More importantly, the
problem becomes NP-complete and its solution time
varies extremely unpredictably.

Actually, the real problem is more complex in one
other way. On occasjion, a teacher may teach more than
one section of a course. Also, a few courses have sec-
tions of different sizes (i.e., large, double-large) and
therefore have different load factors associated with
them. Modeling this requires modifying the decision
variable to include another subscript for course sec-
tions. If this is done, the number of decision variables
increases significantly thereby increasing the overall
complexity of an already difficult to solve problem.
Specifically, the problem becomes a bin packing prob-
lem which is known to be NP-hard [6]. The expert
deals with this complexity by assuming default section
sizes in making assignments to come up with a rough
initial (usually infeasible) solution, and then for each
teacher either increasing assigned section sizes in order
to satisfy a teaching load requirement, or assigning ad-
ditional sections of a course to a teacher if they have
been explicitly requested.

The IP formulation deals with this problem in a
rather inelegent, though practical way. Specifically,
since relatively few courses [e.g., PHL 304) have sec-
tions of different sizes (PHL304Large, PHL304Double-
Large), these different sized sections are treated as dif-
ferent courses with (appropriate load factors. Similarly if
a teacher requests more than one section of a course,
they are treated as d.ifferent courses (e.g., PHL304-1,
PHL304-2). In effect, such courses (like PHL304 in this
example) are treated as object classes; constraints on
the number of sections of such a course are then stated

in terms of instances (PHL304Large, PHL304Double-
Large etc.) of the class.

EXPERT SYSTEM ARCHITECTURE
In contrast to the IP model, the expert system has no
global objective function that guides it toward an opti-
mal solution. Rather, the process of finding a solution
involves a series of local decisions that are m3st pre-
ferred at each point in the problem solving process.

The expert system consists of two components, a
problem-solver that employs a generate-and-t.est strat-
egy, and a TMS. The problem solver is essentially a
production system consisting of rules whose patterns
are matched by assertions [propositions) in a global
database. Each assertion is a problem-solver datum
such as an assignment of a value to a variable (i.e., a
decision) or an operation that can result in ca~1 assign-
ment. The problem data is represented in terms of an
ISA object hierarchy corresponding to the structure in
Figure 1. Problem constraints are stated in i.erms of
predicates that reference objects in the hiera:rchy. For
example, if the default teaching load for a professor is 9
credits, this would be represented by the proposition
“(TL ?F:Professor 9)” where ?F denotes a variable that
will unify with object instances of type Professor. In
this case, TL is a binary predicate, which is a slot in the
Professor object type. With the above proposition, un-
less the TL for an instance of Professor is otherwise
specified, its value will be 9. Similarly, the proposition
“(max-sections PHL304 ?T:Term 10)” states that the
maximum number of sections of PHL304 in any term is
10. For details about the frame-based representation of
PROTEUS, the reader is referred to [15].

Apart from the data that are specified as part of the
problem description, the problem-solver creates data
corresponding to the assignments in generating the so-
lution. Each problem-solver datum has a justification
associated with it. The justification encodes i-he reasons
for belief in the datum. The task of the TMS is to en-
sure that the global database is contradiction-free, that
is, the data are logically consistent (their truth values
do not result in logical contradictions).

Before describing the problem-solver it is expedient
to explain how the TMS works. For an overview of
truth maintenance systems, the reader should refer to
survey articles by Reinfrank [16], McAllester [ll], or
Dhar [4]. However, the fundamental concepts and me-
chanics underlying the TMS should be clear in the fol-
lowing description.

The Truth Maintenance System
There are two types of TMSs, justification-based [5] and
assumption-based [3]. We shall concern ourselves with
the former type. Further, the discussion is in terms of a
Doyle-style TMS since this is the type of TMS used in
the expert system.

In a TMS, every datum has a support statuz: associated
with it; a status of IN indicates that the datu:m is cur-
rently believed whereas an OUT indicates disbelief.

326 Communications of the A.CM March 1990 Volume 33 Number 3

The values IN and OUT are computed via justifications
associated with the datum. Each justification has two
parts, an inlist and an outlist. A justification is consid-
ered valid if it evaluates to true, that is, if each datum in
its inlist is IN and each datum in its outlist is OUT.
Ultimately, all data depend on “ground” level justifica-
tions of two types, premises and assumptions. In a prem-
ise justification, the inlist and outlist are both empty.
This type of justification is always valid. An assump-
tion justification has a non-empty outlist, that is, its
belief is justified by a lack of belief in some other da-
tum. Such a justification is considered non-monotonic
since its validity depends on a lack of belief in some
other datum. Finally, deductive justifications are those
in which the outlist is empty. A datum can have more
than one justification associated with it. A datum is IN
if it has at least one valid justification, otherwise it is
OUT. A datum without a justification (an empty justifi-
cation) is OUT.

To illustrate, consider the following example. Upper
case symbols denote functions and lists of lower case
symbols refer to data:

Datum: (assign Sartre PHL304)
Justification:

(AND (INLIST (wants Sartre PHL304)
(available PHL304))

(OUTLIST 0))

Datum: (assign Kant PHL304)
Justification:

(AND (INLIST (wants Kant PHL304)
(available PHL304))

(OUTLIST 0))

Datum: (available PHL304)
Justification:

(AND (INLIST 0)
(OUTLIST
(max-sections-satisfied PHL304)))

Datum: (wants Sartre PHL304)
Justification:

(AND (INLIST 0)
(OUTLIST (on-leave Sartre)))

Datum: (wants Kant PHL304)
Justification:

(AND (INLIST 0)
(OUTLIST (on-leave Kant)))

Datum: (max-sections-satisfied PHL304)
Justification: ()

Datum: (on-leave Sartre)
Justification: ()

Datum: (on-leave Kant)
Justification: ()

The example can be visualized in terms of the graph
in Figure 2 which shows the justifications of data refer-
enced in the previous justifications. Each circle corre-
sponds to a justification, with an arrow pointing to the

Articles

justified datum, positive arcs connected to the elements
of the inlist and negative arcs connected to the ele-
ments of the outlist. The datum “(assign Sartre
PHL304)” has a two element inlist. The datum “(wants
Sartre PHL304)” has an empty inlist and a non-empty
outlist, which is a non-monotonic justification. The
datum “(on-leave Sartre)” has an empty list of justifica-
tions and is therefore OUT. If this datum were to ac-
quire a valid justification (if Sartre were to go on leave),
its support status and that of those that depend on it
must be reevaluated. Specifically, the “(wants Sartre
PHL304)” would become OUT, also causing “(assign
Sartre PHL304)” to go OUT.

Actually, in reevaluating the belief status of the data,
referred to as reuson maintenance, what the TMS really
does is to ensure that the data as a whole satisfies two
properties, consistency and well-foundedness. In a consis-
tent state each datum with at least one valid justifica-
tion is IN and each one without a valid justification is
OUT. A state is well-founded if no set of beliefs is
mutually monotonically dependent; in terms of a la-
beled network such as that in Figure 2, this means that
there is no set of arcs from a node to itself all of which
are labeled positively.

In the expert system, the TMS works in conjunction
with the problem solver as follows. Each problem-
solver action is communicated to the TMS at which
point the TMS executes a constraint satisfaction proce-
dure to ensure consistency and well-foundedness. Es-
sentially, this involves updating the justifications asso-
ciated with each datum such that the two conditions
are satisfied. A problem-solver action can lead to a con-
straint violation which is recorded in the network as a
contradiction, that is, a special node called contradiction
becomes IN. When this is detected by the TMS, it tries
to compute a new labeling that makes the contradiction
OUT. Control then passes back to the problem solver,
and the cycle repeats. We shall later describe in more
detail the workings of the TMS in the context of an
example.

The Problem Solver
The problem solver is a production system consisting of
a set of rules, some of which are designed to implement
a generate-and-test strategy. It should be noted that
there are alternative AI approaches to solving con-
straint satisfaction problems that employ a somewhat
different problem solving strategy, namely, the princi-
ple of least commitment (Marr, [g]; Stefik, [IT]; Waltz
[18]). In least commitment, the solver avoids making a
choice that might have to be undone later. In effect, the
objective is to avoid backtracking that is characteristic
of the generate-and-test approach. The least commit-
ment approach usually involves a problem solver iterat-
ing over “states” or variables that have several possible
associated interpretations that become successively
constrained with each cycle. This approach has been
applied most effectively in computational models of
vision ([9, 181). A feature of such problems is that there
is sufficient new information about each state in each

March 1990 Volume 33 Number 3 Communications of the ACM 327

Articles

IN

1 Max-se;cz;g$atisfied 1

OUT

FIGURE 2. A Consistent Well-Founded State

iteration so that generate-and-test is in fact a poor strat-
egy. The assignment problem we have modeled can be
viewed in this framework as one where the possible
interpretations for each state (teacher) are already spec-
ified at the outset as a constrained ordered set of
courses (the course repertoire). Therefore, in order to
generate a solution, the problem-solver uses a generate-
and-test strategy based on this ordering.

In the following paragraphs we describe the expert
system architecture using a simplified set of rules that
play a role in one part of the problem solving process.
The rules employ a LISP-like prefix notation that is
used in PROTEUS [13]. In the following rules a ques-
tion mark followed by a symbol denotes a variable, i.e.
?XXX is the variable x3:x. Each list in a rule consists of a
pattern (a form) that is matched against a datum in the
global database. There are two types of rules, forward
and backward. When the problem solver has a proposi-
tion that it is trying to prove to be true, it attempts to
do so via a backward rule. A “c” symbol denotes a
backward rule; the form appearing before it is the con-
sequent and the ones after it are antecedents. In trying
to prove a goal, the assertions that match the anteced-
ents become subgoals. Proving all of these subgoals
completes the proof Iof the original goal. This process is
known as backward chaining.

The symbol “+” denotes a forward rule. The forms
appearing before it are antecedents, the others are con-
sequents. The forward rule “fires” when assertions
match its antecedenI. When this happens, the datum
(instance) corresponding to its consequent is added
automatically to the global database. This process is
known as forward chaining.

In the following rules, the variables used in the pat-
terns are as follows:

?prof refers to the current professor under con-
sideration.

?sem refers to a semester (either fall or spring).
?course refers to the course that is under consideration

for assignment.
?p-cycle refers to the list of professors who have already

been considered for ?course.
?c-cycle refers to the list of courses that have already

been considered for ?prof.

The following backward rule states that the goal of
making a course ?course a chosen course for professor
?prof in semester ?sem can be achieved if that course is
actually desired by the professor unless that course has
already been considered (and presumably failed) for
that professor:

(Mark-desired-course-as-chosen
;;name of this rule, rule 1

(chosen-course ?prof ?course
?sem ?c-cycle)

(desired-course ?prof ?course
?sem ?c-cycle)

(unless (element ?course ?c-cycle)))

The following forward rule would fire whenever
there is an assertion stating that courses be assigned to
a professor:

(Select-Course ;;rule 2
(assign-courses-to-prof

?prof ?sem ?p-cycle ?c-cycle)
(chosen-course ?prof ?course

?sem ?c-cycle)

(attempt-to-satisfy
?prof ?course ?sem ?p-cycle
?c-cycle))

In the previous rule, the datum corresponding to the
consequent would have the two data items matching
the first two antecedent forms on its inlist.

The remaining rules can be interpreted similarly.
Each form is accompanied by a comment wlenever
necessary.

(Semester-Succeeds ;;rule 3
(attempt-to-satisfy

?prof ?course ?sem ?p-cycle
?c-cycle)

(unless
(unacceptable-for-semester

?sem ?prof ?course ?p-cycle
?c-cycle))

(successful
?prof ?course ?sem ?p-cycle
?c-cycle))

; ;mark as successful

In this rule, a datum corresponding to the conse-
quent would have the datum matching the first form on
its inlist and the datum matching the form in the

328 Communications of the ACM March 1990 Volume 33 Number 3

Articles

“unless” part on its outlist. In effect, it would have a
non-monotonic justification.

Semester-Fails ;;rule 4
(attempt-to-satisfy

?sem ?prof ?course ?p-cycle
?c-cycle)
..If this semester is not acceptable

(unacceptable-for-semester
?sem ?prof ?course ?p-cycle
?c-cycle)

failed-semester
?sem ?prof ?course ?p-cycle
?c-cycle))

(Contradiction-detection-type-l
;;rule 5

(failed-semester
?sem ?prof ?course ?p-cycle
?c-cycle)

(C03NTRADICTION))

Constraint knowledge is also encoded as rules. These
are used to enforce teaching loads, bounds on the num-
ber of sections, and other requirements such as those
stated in the IP formulation. For example, the following
rule (in conjunction with other rules such as rule-3 and
rule-J) enforces the upper bound on the number of
sections for a course during a particular semester:

(Course-section-check ;;rule 6
(unacceptable-for-semester

?sem ?prof ?course ?p-cycle
?c-cycle)

(semester-max-constraint-satisfied
?course ?sem))

In addition to the assignment and constraint checking
types of rules, the system also contains rules for contra-
diction resolution. When a contradiction arises, the
TMS first finds a culprit to be made OUT to resolve the
contradiction. The process of finding a culprit is a re-
cursive one that involves determining the ground level
data (the assumptions) that support the contradiction.
The contradiction is resolved by invalidating all valid
justifications of one of its supporters, called the culprit.
This involves justifying some belief on the outlist of
the justification being invalidated. For example, if an
attempted assignment fails, one way to resolve the
problem is to exchange that (chosen) course with an
alternative course that that professor can teach. The
following rule shows the use of a predicate, FIX, that is
designed to do contradiction resolution as described
above. In [13] terminology, a datum that unifies with its
first argument is referred to as the target, one that uni-
fies with its second as the fix-culprit, and the third as
the fix-elective:

(Fix-via-alternative-course ;;rule 7
(fix (failed-semester ?sem ?prof

?course
?p-cycle
?c-cycle)

(chosen-course ?prof ?course
?p-cycle ?c-cycle)

(exchange ?alt-course ?course
?prof
?sem ?p-cycle ?c-
cycle))

Llternative-course
?prof ?course ?alternatives)

(element ?alt-course ?alternatives))

If an exchange is successful in resolving a contradic-
tion, the following rule makes the alternative course a
desired course, which in turn causes the first rule to
make it chosen, thereby repeating the cycle.

(Try-An-Alternative ;;rule 8
(exchange ?alt-course ?course ?prof

?sem ?p-cycle ?c-cycle)

;;mark the alternative course as de-
sired
;;(this will cause the

Select-Course--Rule to fire
(desired-course ?prof ?alt-course)

;;reject the original course.
(rejected-course ?prof ?course

?p-cycle ?c-cycle))

An Example
In order to illustrate how the rules above work, let us
consider a scenario where among other data, the fol-
lowing are in the database:

Sartre wants to teach ph1304 in fall:
(desired-course sartre ph1304)

Sartre has as alternatives to ph1304 in the fall, ph1310
and ph1318:

(alternative-course sartre ph1304 fall (ph1310 ph1318))

Suppose that the maximum allowable sections of
ph1304 have already been allocated for fall:

(semester-max-constraint-satisfied phl304 fall)

Suppose Sartre is now up for consideration (Anselm has
already been considered for ph1304):

(assign-courses-to-prof Sartre fall (Anselm) ())

The rules try assigning ph1304 to Sartre in the fall
and fail because the maximum constraint has been sat-
isfied for the term. This creates a contradiction as
shown in Figure 3. For simplicity we have truncated
the data, assuming that they refer to Sartre in the fall
term.

In the dependency network in Figure 3, the contra-
diction is IN. The TMS attempts to make the contradic-
tion OUT by finding a culprit and invalidating one of

March 1990 Volume 33 Number 3 Communications of the ACM 329

Articles

-I-

Failed ’
Semester Fall

(IN)

FIGURE 3. Contradiction State

its in-supporters. In this case, the culprit is “(chosen-
course 304)” (it unifies with the fix-culprit in rule 7)
and its in-supporter” (desired-course 304)” is invali-
dated by putting the “(exchange 310 304)” datum on its
outlist, and “(desired-course 310)” gets a valid justifica-
tion by the exchange datum (via rule 8) on its inlist.
Finally, the contradiction is put on the outlist of ex-
change which makes it (the contradiction) OUT. Part
of this new stable and well-founded state is shown in
Figure 4.

In summary, the dependency network maintains the
reasons for assignments. This includes desired as well
as unexpected assignments such as the one resulting
from the exchange effected by rule 8. Whenever a justi-
fication for some datum becomes invalid, the TMS
computes what beliefs must be revised in order to re-
store consistency and well-foundedness. It is important
to recognize that the problem of contradiction resolu-
tion is often an underconstrained one, that is, there are
many possible labelings that satisfy consistency and
well-foundedness. Rules 7 and a provide one way of
doing it using domain-specific knowledge.

THE IP ARCHITECTURE
The integer programming formulation consists of about
TOO binary variables and 300 constraints. The model
has been implemented using the ZOOM (Zero One
Optimization Model:1 library of the XMP package [lo].
XMP includes a mocleling language, XML, for express-
ing the problem.

ZOOM solves an integer program as follows. The LP
relaxation (ignoring integrality) is first solved. After an
LP solution is obtained, a heuristic procedure, called
Pivot and Complement (Balas and Martin [l]) attempts

to find an integer solution. Basically, this involves a
sequence of pivot operations which put all slacks into
the basis at minimum cost. If a feasible integer solution
is found, it is then improved by flipping variables to
their opposite bounds.

As shown in Figure 5, we have implemented a pre-
processor that translates the input data used by our
expert system into the ZOOM modeling language, XML.
The XML interpreter generates an MPS file that is used
by ZOOM. The preprocessor takes as input problem
data expressed in terms of the object hierarchy of Fig-
ure 1. Expressing the constraints in XML requires the
preprocessor to translate them into algebraic expres-
sions stated in terms of decision variables. For example,
a constraint such as “A faculty member can -:each at
most 1 graduate course per year” involves searching the
ISA hierarchy to locate all instances of faculiy, graduate
courses and terms, defining the decision variables, and
writing out the constraint. In this way, only decision
variables essential to the formulation are defined. The
number of decision variables can be further reduced by
analyzing each teacher’s course repertoire and exclud-
ing variables corresponding to impossible assignments.
For example, if Frege’s repertoire slot does not include
ph1381, he can never be assigned this course, and
there is no point in defining a decision variable for
this assignment.

The results produced by ZOOM are translated into a
schedule for the user. Although not implemented by us,
it is also possible to produce other summaries and an-
swer questions using the generated schedule and the
object hierarchy. For example answers to questions like
“how many faculty are teaching undergradtmte courses
that meet twice a week,” can be very useful to the
decision maker.

The preprocessor and translator are both imple-
mented in Common Lisp. The experiments were car-
ried out on a SUN-3 workstation, which is also one of
the platforms on which the expert system has been
developed.

ANALYSIS OF RESULTS
The data used by the ES and IP models was Iprovided
by the expert. It consisted of profiles of his departmen-
tal faculty, their teaching preferences, and departmen-
tal course requirements over the last two years. The
expressiveness and performance of the two models
could therefore be compared with the real plans that
had been formulated by the expert and his assistants
based on actual data. In this section we present an
analysis of the results produced by the IP model rela-
tive to the expert model on the available data.

Performance
Like many integer programs, we found the solution
time of the IP model to be highly unpredictable, vary-
ing from a few minutes to a few days. In particular, it
was extremely sensitive to the teaching 1oa.d (TL) con-
straint (number 3 in the IP formulation, the ‘knapsack

330 Communications of the ACM March 1990 Volume 33 Number 3

Articles

1 1 Contradiction

L

Unacceptable-
for-fall

(IN)

Semester-
Max-constraint-

Satisfied
(IN

Failed n Semester Fall
(OUT)

course

exchange 310
) 304 (IN)

FIGURE 4. Contradiction-Free State

constraint). Specifically, varying the value of T, in the
range of interest (i.e. the range in which solutions are
feasible or “almost feasible”) by as little as 2 percent
resulted in orders of magnitude variations in solution
time. This was indicative of the tightly constrained na-
ture of the problem-in this case, the bounds on the
numbers of sections of each course (constraint 1) were
such that it was difficult to satisfy that constraint and
the minimum teaching local requirements simultane-
ously.

In all cases, when a solution was found, it was ob-

Assign-
courses

to-prof (IN)

Desired-
course

310 (IN)

tained quickly by the pivot and complement heuristic
[l] which is incorporated in the ZOOM code. It always
took under five minutes on a dedicated WN-3. If a
feasible solution was not found with this heuristic, it
was not found at all.’ Further, the branch and bound
algorithm, which ZOOM resorts to if the heuristic fails,
never found a solution even after many hours of run-
ning time. This is because the number of fractional

’ The heuristic procedure never found a solution once it started executing its
rounding procedure. (The reader interested in the description of these heuristics
is referred to [l] and [lo].

March 1990 Volume 33 Number 3 Communications of the ACM 331

Articles

valued variables remaining after the LP solution, typi-
cally between 300 and 500, gives rise to an enormous
search tree.

In contrast, the expert system’s solution time was less
volatile. Under identical conditions on the SUN-3 it
usually takes between 1 and 2 hours for it to generate a
solution if one exists. If it cannot find one, it generates
a partial solution along with a history (in the form of
the dependency network) which can be examined to
determine why a complete solution could not be found.
This is an important advantage of the expert system,
which we return to later.

Control of Reasoning
In general, the integer program generates a plan that
has about three-quarters of the same assignments as
those made by the e.xpert. In some cases the expert was
pleasantly surprised by its decisions, but in a larger
proportion of the castes the differing assignments were
judged to be undesirable. The most common manifesta-
tions of such undesirable results were cases where
teachers had too many preparations, too few prepara-
tions, and an unnecessarily heavy load of students (e.g.,
two huge classes that were not required for the TLs).

Based on the expert’s analysis of the solutions gener-
ated by the IP, we have identified three reasons for the
differing assignments which we call single objective
limitations, compiled knowledge limitations, and global
optimization limitations.

Single Objective Limitations
The objective function used in the formulation ex-
presses one goal of the decision maker: to give all
teachers their desired courses to the extent possible.
However, in reality there are other goals that the ex-
pert tries to satisfy simultaneously. One of these is to
ensure that as far as possible, each teacher’s load is as
close as possible to the minimum required. What is
required, therefore, is a multi-objective formulation.
Unfortunately, this makes solution extremely difficult.
Even if the problem is solvable, a “frontier” of optimal
solutions is generated which must be evaluated by the
decision maker. For large problems involving discrete
choices, analyzing the goodness of alternative sets of
assignments can be (difficult.

While the single objective formulation works well in
most cases, it sometimes produces undesirable results.
For example, consider two teachers, Helga and Hegel,
who have been assigned courses that result in TLs of 9
and 12 respectively and that 9 is the minimal require-
ment. Assume that Hege1 is more flexible than Helga.
Now, if a section of :Ethics needs to be taught and Helga
and Hege1 are the only qualified teachers, Hege1 will
be assigned since his cost coefficient is lower than
Helga’s. Clearly, if balancing loads is a concern, the
course should be assigned to Helga.

It is possible to alleviate this problem to some extent
by expressing the objective function as a constraint, but
this too has severe limitations. One must decide on a
reasonable TL upper bounds for each teacher. In this

example, if Hegel’s upper bound is 14, the course will
be assigned to Helga, as desired. However, setting such
bounds is difficult. If an inappropriate value is used,
feasible solutions can be excluded.

In contrast, it is relatively easy to encode knowledge
about multiple objectives in the expert system rules.
For example, in the Hegel/Helga case, it is possible to
have in the antecedent of a rule that attempts to assign
courses (such as the select-course rule) a form such as
“(least-loaded ?prof))” which would result in the rule
condition becoming true (unification succeed.ing) only
with the least-loaded professor. Such rules ensure that
“locally good” decisions will be made but they do not
guarantee a global optimal solution. We shall elaborate
on this point in the following section.

Compiled Knowledge Limitations
The behavior of the system and the solution are very
sensitive to the cost coefficients. Each teacher has three
cost values, corresponding to the penalty associated
with assigning a desired course, an explicit alternative,
and an implicit alternative (a course that the teacher is
capable of teaching but did not ask for). The values are
organized as shown in Table I.

Observing the first column, we see that a teacher
with less flexibility (CFI = 1) will get preference for a
desired course over a teacher that has more flexibility.
Moreover, the penalty associated with giving, the for-
mer an explicit alternative instead of a desi.red course
(9) is higher than doing it for the latter (1). :For conflict-
ing desired courses, if the less flexible teacher gets the
desired and the more flexible one gets an explicit alter-
native, the cost is 1 + 6, otherwise it is 5 + 10. Similar
reasoning applies to the situation where there are con-
flicts in the explicit alternatives. Finally, it should be
noted that the coefficients are designed so t.hat a de-
sired plus explicit alternative combination is always
preferred to a desired plus implicit alternative combi-
nation.

CFI = 1
CFI = 2
CFI = 3
CFl=4
CFI = 5

TABLE I. Organized Course Values.
-

Desired Explicit alt. Implicit alt.

1 10 19
2 9 18
3 8 17
4 7 16
5 6 15

The basic problem with the cost coefficients is that
they incorporate a lot of compiled knowledge about
preferences, flexibility and trading criteria which
makes the behavior of the system somewhat unpredict-
able. We have found that changing the cost values and
differentials can have significant unforeseen (desirable
or undesirable) consequences on the assignments in the
following ways. When the differentials between explicit
and implicit alternatives are made larger, the penalty
associated with assigning implicit alternatives is high,
hence fewer of these are assigned. However, this also

332 Communications of the ,4CM March 1990 Volum? .33 Number 3

Articles

Preprocessor

3

-
I XML interweter 1

I Zoom
I

FIGURE 5. ES to ZOOM Translation

has the effect of reducing the desired courses assigned
since in conflicting situations the penalty associated
with assigning explicit alternatives relative to the de-
sired courses is low. When both types of differentials,
desired-explicit and explicit-implicit, were increased,
there were a few changes in assignments. However, we
were not able to determine a general pattern underly-
ing these changes nor the reasons for the changes.

Another related difficulty with compiled knowledge
is that of encoding complex preferences in it. For exam-
ple, it is usually preferable to teach two instead of three
courses but if someone needs to teach three (to make
the required TLs) it is preferable to have two sections of
one course and one section of another instead of one
section each of three different courses. This is because

there is a diminishing marginal effort associated with
teaching an additional section of a course. Such knowl-
edge is not expressed in the coefficients of the objective
function, but it is important in matching the expert’s
behavior.

Another type of knowledge that is difficult to express
either in the constraints or the objective function is one
involving unusual situations, that is, an action that is
rarely undertaken but is a good one under some cir-
cumstances. For example, a seminar required in the
spring term would not normally be swapped into the
fall term except under certain unusual circumstances.
Clearly, it is not appropriate to exclude such actions via
constraints. Nor is it appropriate to attach heavy penal-
ties to such actions, since this would prevent them
from being taken even under appropriate conditions. In
the expert system, unusual situations can be left to the
contradiction resolution (backtracking) by embedding
the appropriate knowledge required for backtracking in
fix rules (such as rule 7).

The examples above bring out some of the differ-
ences in how the IP and ES models incorporate problem
solving knowledge. The ES proceeds locally in a GPS-
like manner, reducing the differences between an
evolving partial solution and the requirements based on
preference information encoded as heuristic rules. In
effect, the rules are sensitive to the state of the evolving
solution, giving the system builder considerable control
over inference.

It is easy to define rules that encode knowledge about
the types of preferences discussed earlier. That is, pref-
erences for assigning additional sections of a course be-
fore considering a new course, preference in unusual
situations, or for assigning courses to less loaded teach-
ers as discussed earlier. In the IP formulation, however,
such knowledge is compiled into the coefficients. Given
the inevitable loss of information resulting from this
transformation it is not surprising that there is a gen-
eral loss in control over reasoning with the IP model. In
other words, in the IP formulation, all such preference
knowledge is usually compiled into one global objective
function, which controls how the search space is ex-
plored. We will now comment on some of the conse-
quences of global optimization.

Global Optimization Limitations
While the minimization of cost is designed to maximize
the extent to which teachers are assigned desired
courses as a whole, the system has a tendency to sched-
ule sections that are as close as possible to the lower
bound since this also minimizes cost. This can have the
effect of not assigning such courses to teachers that
desired them. To illustrate, if at most one section on
Ethics should be scheduled, the system has a tendency
to schedule none. This turns out to be undesirable in
situations where a professor requested Ethics but was
assigned an alternative instead.

Essentially, this problem would be avoided if in the
case of a professor asking for that course, the lower

March 1990 Volume 33 Number 3 Communications of the ACM 333

Articles

bound is set to one instead of zero. In effect, the con- that the constraints were not satisfiable. For example, if
straint is conditional on the data. However, deciding three sections of a course were required and only two
the appropriate bound based on the input data is tricky people were qualified to teach it, clearly, no solution
since tightening it could rule out feasible solutions or would be found. Secondly, we found that the knapsack
interfere negatively in unforeseen ways with others’ constraints, on TLs, were often too tight for it to find a
assignments. feasible integer solution.

The only way to express constraints as conditional on
the data is to use non-monotonic justifications. For the
example above, a rule with an “(unless . . .)” form
could be used to set the bound. Then, an assignment
would have the datum matching the condition in the
unless in its outlist, making it clear that one section was
scheduled since a professor desired it. If that professor
were to go on leave, invalidating the desire for that
course, the TMS could automatically validate the da-
tum specifying the bound of zero. In general, a TMS is a
natural mechanism for modeling default reasoning of
this type.

We solved the first problem by analyzing, the behav-
ior of the expert system. While that system i.s also often
unable to find a feasible solution, it generates a useful
partial solution indicating those “holes” in the schedule
that still need to be filled.

Another consequence of global optimization is the
lack of explanation for its decisions. In analyzing the
results of the IP we were generally able to infer after
analyzing the data i:n detail, why a teacher had not
been assigned a desired course. For the most part, this
happened when there was competition for a limited
number of sections. Often, however, the rationale for
assignments could n.ot be determined even after consid-
erable analysis of the constraints, preferences and flexi-
bility indices, In suc:h cases, global optimization essen-
tially obscures the reasons for assignments.

Partial solutions are extremely useful to the decision
maker. There is no guarantee that the skills of the
teachers will cover the requirements (particularly if a
significant number of faculty are on leave). In such
cases, and the decision maker needs to know what the
holes are. Typically, there are several ho1e.s in the
schedule in the initial draft. These are patched by hir-
ing visiting professors, lecturers, or graduate students.
In this respect, the integer program is deficient because
if it fails to find a feasible integer solution, it runs vir-
tually forever and finally provides no useful informa-
tion to the decision maker. What is required in such
cases is an integer solution which even though not
feasible, is close to feasible.

In contrast, the ES attempts to make good local as-
signments whose justifications are recorded by the
TMS. The justifications are extremely useful for pur-
poses of explanation and for incremental revision of
existing decisions in an evolving solution. Although the
ES has no notion of a global optimum, the more the
knowledge provided to the system for resolving con-
flicts, making choices, etc., the better the quality of its
solution. The factors that determine whether the expert
system will work better than the IP model are the ex-
tent to which it is important to specify complex prefer-
ences of the type described in the preceding discussion,
and the ease with which such knowledge can be spec-
ified by the expert, These two factors interact in a
complex manner. If complex preferences need to be
specified, it is usually indicative of the complexity of
defining optimal solutions, and hence the limitations of
the objective function as the mechanism driving the
search. However, in such situations the expert also
finds it increasingly difficult to specify the preference
knowledge in terms of abstractions. Over time, this
can result in a situation where interactions among the
various pieces of knowledge become very complex,
thereby eroding the modularity of the knowledge base.

Even though the results of the expert systcsm pointed
us to the section requirements constraints to loosen, we
still did not manage to obtain a solution unt:il we sim-
plified the problem by excluding the TL constraints,
solving it as a transportation problem. We then intro-
duced lowered TL requirements. As we mentioned ear-
lier, we found that the ability of the system to find an
integer solution was extremely sensitive to the TL
value. On analyzing the expert’s behavior, we found
that he dealt with the TL requirements by first ignoring
them, making assignments that put teachers’ loads in
the “ballpark,” and then massaging the schedule to sat-
isfy the requirements. For the most part, this massaging
consists of giving teachers larger sections which have
higher credits (instead of giving additional courses
which increase the number of preparations) or assign-
ing them light administrative responsibilities for which
they earn small amounts of credit.

PLAN REVISION
A major drawback of the IP model is its lack of support
in making revisions to a plan whose underlying as-
sumptions often change. Planning course assignments is
based on assumptions about enrollments (which deter-
mine the numbers of sections planned), and faculty
availability. If enrollments turn out to be higher than
expected, additional sections must be scheduled. If a
faculty member gets a grant or goes on leave, substitute
teachers must be found. In all such cases, it is impor-
tant that the overall plan be perturbed as little as
possible.

The Need for Partial Solutions
A major problem during the early runs of the IP model
was its inability to find a feasible integer solution even
after many hours of running time. Two factors contrib-
uted to this situation. Firstly, the data were often such

Several types of actions can be taken by the decision
maker when assumptions change. Depending on the
change, the action can include hiring assistant instruc-

334 Communications of the ACM March 1990 Volume 33 Number 3

tors, hiring visiting professors, and swapping assigned
courses among faculty. Hiring a visitor is usually fea-
sible only if there is sufficient time to negotiate a
contract.

Some changes are easy to manage. For example, if a
faculty that goes on leave was teaching low level un-
dergraduate courses, instructors can be hired to fill in.
However, if graduate courses are involved revision be-
comes more complex since such courses can be highly
specialized, making it difficult to find faculty qualified
to teach them. Also, faculty are limited to a maximum
of one graduate course per year. In summary, determin-
ing who to assign to an unassigned graduate course can
be difficult, depending on how many faculty are quali-
fied to teach the course, how flexible they are, whether
they are already scheduled to teach a graduate course,
and whether substitutes can be found for such courses.

The IP model supports revision as follows. The deci-
sion maker must specify what subset of the existing set
of assignments can be changed. The complement set is
considered fixed; the assignments in this set are there-
fore added as constraints and the problem is re-solved.
In effect, the decision maker must specify what part of
the plan is fixed and what is variable. Further, the
decision maker must make a judicious choice in speci-
fying what combination of lecturers, Assistant Instruc-
tors and visiting professors should be considered to fill
the newly created holes in the plan.

Unfortunately, it is usually difficult for the decision
maker to specify in advance with any degree of confi-
dence which parts of the plan should be considered
variable. Rather, the process of figuring out what to
change requires negotiation, the results of which serve
as further input in determining what parts of the model
can be considered changeable. In effect, figuring out
what should be changed is where support is most needed.
In this sense, the IP model requires the decision maker
to do too much. Specifically, if changes are to be mini-
mal, he must keep the variable set small, otherwise the
new solution can contain too many changes. However,
this small set of changeable assignments should also
result in a solution being found, otherwise the exercise
is of little use. Determining the appropriate set can re-
quire considerable trial and error; finding it is therefore
the really difficult part of the problem where support is
most needed.

Another aspect of revision is that certain changes
actually require that changes be made to the con-
straints. For example, if an instructor who goes on
leave was teaching a course that is not strictly required,
it is usually not re-assigned to anyone when the IP
model is run with the new data since the objective is to
minimize cost. Clearly, this is problematic if that course
has already been listed as an offering. In such cases,
what is really required is that the constraints be modi-
fied to state that the listed course must be offered.

In order to support revision, it is necessary that a
system actually suggest alternative courses of action to
the decision maker. For this to be possible, it is neces-
sary for it to record the rationales for existing assign-

ments. For example, if an instructor I, who goes on
leave was teaching X1 which was desired by but not
assigned to I, (perhaps due to an exchange like the one
illustrated in the example), it might make sense to con-
sider whether I, should now teach X1. This type of
reasoning is supportable with a truth maintenance sys-
tem. In a TMS, for example, one of the justifications for
the assignment I2 t Xz would be the fact that I, was
assigned X1. When this latter proposition is no longer
true, the justification for I2 + X1 becomes invalid, mak-
ing it possible to assign X1 to I:!. This process can be
repeated recursively until a consistent set of assign-
ments is found.

In practice, however, it would probably be undesira-
ble for the above process to happen automatically for
two reasons. Firstly, it is conceivable that taking away
X2 from I2 could create an even bigger problem if it is
difficult to find someone to teach X1. Secondly, it
would not make sense to take such a course away if a
significant amount of preparation has already gone into
preparing for that course or if the teacher assigned to it
is inflexible.

Regardless of these limitations, a TMS should prove
to be useful. Even if it fails in repeated attempts at
finding a solution, the reasons for failure can be re-
corded and presented to the decision maker. In this
way, even if the TMS does not find a solution, it pro-
vides useful information that can be used to find a
solution. Since it is desirable to try several avenues
simultaneously, an ATMS [3] might be suitable even
though in principle any TMS could be used.

The problem of determining how breakable an
assignment is is a much more difficult problem. It
depends on the flexibility of the teacher, how suited
substitutes are for a course, and how much time has
already gone into preparation. We are currently in the
process of trying to formalize these concepts so that
they might be representable and used by a TMS.

DIRECTIONS FOR FUTURE WORK
It is clear that the optimization problems solvers such
as ZOOM must be made much more flexible if they are
to prove useful as decision support tools for practical
problems. Based on our experience with the experi-
ments and analysis of expert behavior, we feel that
there are at least two directions that are worthwhile
pursuing. First, a more expressive interface is required
which allows the problem data to be specified as “natu-
rally” as possible. Second, it should be possible to aug-
ment ZOOM so that it provides more useful output to
the user.

On the interface front, we have found that specifying
problem data in terms of the object hierarchy and de-
fining constraints in terms of such objects is a very
useful functionality for the user. In effect, we have
built a layer on top of XML. Currently languages like
XML and GAMS are used directly as specification lan-
guages. While they (especially GAMS) allow the user to
specify the problem in terms of a compact notation,
they are still relatively low-level utilities. We feel there

March 1990 Volume 33 Number 3 Communications of the ACM 335

Articles

are significant productivity gains possible by providing
a higher level modeling environment where a user can
specify an arbitrary class hierarchy and constraints
over it, and have the mathematical formulation gener-
ated automatically. We are currently working on the
primitives that such an environment must have for
it to be able to work for all mathematical programming
problems.

We also feel it should be able to build in a truth
maintenance functionality into the optimization pack-
age, making it more flexible and useful to the user. In
ZOOM, for example, considering that the branch and
bound is usually unsuccessful (in our case it was always
unsuccessful), it makes sense to try and generate an
“almost feasible” solution in cases when the Pivot and
Complement heuristic fails.

When the heuristic fails, the system knows which
constraints are being violated (in our problem these
were the knapsack constraints). At this point, if the
number of non-integer variables is not too large (i.e.
less than about SO), the system could perform a local
search around these variables only (keeping values of
all integer variables fixed), that is, attempt different
combinations of integer values for the non-integer vari-
ables, and keeping a record of the contradictions. Such
a history could be used by the system [or the user) to
decide which constraints to loosen in order to generate
a feasible solution. In effect, this boils down to aug-
menting the Pivot and Complement heuristic with a
primitive truth maintenance system. Actually, this is
quite similar to what the expert does in overcon-
strained situations (i.e. ignore TLs, obtain a solution,
and gradually introduce the TLs). By enabling the sys-
tem to loosen constraints in situations where no solu-
tion is in sight, it can begin to approximate the problem
solving behavior of experts. As a next step in this re-
search we are considering ways of incorporating a truth
maintenance functionality into optimizers to handle
such situations.

Acknowledgments. We are extremely grateful to Ted
Stohr, Charles Petrie and Elaine Rich for comments
that have greatly improved this article. The expert sys-
tem rules were formulated by Charles Petrie, and the
system was implemented by Donald Steiner and Petrie.
We thank Donald Steiner for providing us with the
rules used for the belief revision example in this arti-
cle. Robert Causey provided extensive critiques of the
solutions produced by the integer programming model.
Finally, thanks to Roy Marsten for ZOOM.

REFERENCES
1. Balas. E.. and Martin. C.H. Pivot and complement-A heuristic for

O-1 programming. kkznagemenf Sci. 26. 1 (Ian. 1960). 66-96.
2. Dantzig. G. Linear Programming and Extensions. Princeton Univ. Press,

1963.

3. de Kleer. J. An assumption-based TMS. Arfijl [n&l/. 28, 2 (March
1986).

4. Dhar. V. A truth maintenance system for supporting constraint-
based reasoning. DE&. Support Sysf. (Fall 1989).

5. Doyle, J. A truth maintenance system. /Lrtif. Infefl. I;!. :1 (1979).
6. Carey, M.. and Johnson, Il. Computers and Intracfabil,‘ty: A Guide to

the Theory of NP-Completeness, W.H. Freeman and Co.. N.Y.. 1979.
7. Hinton. G.E. Relaxation and its role in vision. Ph.D. thesis. Univ. of

Edinburgh. 1977.
8. Hooker, J.N. A quantitative approach to logical inferer.ce. Decis. Sup-

port Sysfems 4. I (March 1988).
9. Man, D. Vision. W.H. Freeman and Co.. N.Y.. 1982.

10. Marsten. R. ZOOM/XMP User’s Manual. Release 4.0. XMP Optimi-
zation Software Company, Tucson. Ariz.. July 1987.

Il. McAllester. D. Reasoning Utility Package. MIT-Al Lab Memo 667,
April 1982.

12. Petrie. C., Russinoff. D.. and Steiner, D. Proteus 2: System Descrip-
tion. MCC Technical Report AI-136-87. May 1987.

13. Petrie, C.. Revised dependency-directed reasoning for default rea-
soning Proceedirigs of fhe Sixth National Conference D!I .4rtificial Infelli-
gerice (AAAI-87). July 1987, pp. 167-172.

14. Petrie, C., Causey, R., Steiner, D., and Dhar. V. A Planning Problem:
Revisable Academic Course Scheduling. MCC Technical Report
ACT-AI-020. June 1989.

15. Proteus. Proteus: A Default Reasoning Perspective. MCC Technical
Report AI-352-86. 1986.

16. Reinfrank. M. Lecture Notes on Reason Maintenance Systems. Tech-
nical Report INFZ ARM-S-88. Siemens AC. Munich, \V. Germany,
1988.

17. Stefik. M. Planning With Constraints. Ph.D. thesis and Technical
Report STAN-CS-80-784. Department of Computer Sr:ience. Stanford
Univ.. Stanford. Calif.. 1980.

18. Waltz. D. Understanding Line Drawings of Scenes \Vith Shadows.
The Psychology of Camputer Vision. P.H. Winston. Ed. &f&raw-Hill.
N.Y.. 1975.

ABOUT THE AUTHORS:

VASANT DHAR is associate professor of Information Systems
at the Leonard N. School of Business, New York IJniversity.
His research focuses on the structure of planning and design
problems and the development of representation and reasoning
formalisms for knowledge-based systems dealing with such
problems.

NICKY RANGANATHAN is a Ph.D. student of Information
Systems at the Leonard N. School of Business, NYU. He is also
affiliated with MCC and the Eastman Kodak Corporation
where he is analyzing the process of design wi1.h the objective
of identifying what parts of this process can be supported with
intelligent design systems. and the representations needed to
build such systems.

Authors’ Present Address: Information Systems Dept., New
York University, 40 W. 4 St., Room 619, New York, NY 10003.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage. the ACM copyright notice and the title Iof the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise. or to
republish, requires a fee and/or specific permission.

336 Communications of the ACM March 1990 Volume 33 Number 3

