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Virtually all decision making situations involve con- 
straints. What distinguishes various types of problems is 
the form of these constraints. Depending on how the 
problem is visualized, they can arise as rules, data de- 
pendencies, algebraic expressions, or other forms. 

Constraint satisfaction problems (CSPs) have been 
studied extensively in the operations research (OR) and 
artificial intelligence (AI) literature. In OR formulations 
constraints are quantitative, and the solver (such as the 
Simplex algorithm) optimizes (maximizes or minimizes) 
the value of a specified objective function subject to 
the constraints. In contrast, AI research has focused on 
inference-based approaches with mostly symbolic con- 
straints. The inference mechanisms employed include 
theorem provers, production rule interpreters, and var- 
ious labeling procedures such as those used in truth 
maintenance systems. 

where the elements c,, c2, . . . , c,, are elements of a row 
vectorc,x,,x,,x, ,..., xn are elements of a column 
vector x, and n(c) is the number of negative elements 
in c. Each Ci is 1, 0, or -1, indicating whether Xi ap- 
pears, does not appear, or lx{ appears in the clause 
respectively. The above notation is from Hooker [B]. 

In concrete terms, the symbolic/quantitative equiva- 
lence means that many constraint satisfaction problems 
can in principle be modeled using symbolic inference 
techniques employed in expert systems or the quantita- 
tive techniques of OR. In practice, there are pros and 
cons to both approaches. One of our objectives has been 
to study the tradeoffs involved in detail. 

It has been apparent for some time that there is a 
close relationship between logical and quantitative in- 
ference. Dantzig [2] showed how logical propositions 
could be expressed quantitatively using Boolean vari- 
ables together with algebraic operators. In this way, 
symbolic constraints can be modeled in terms of an 
integer programming formulation. For example, the 
constraint 1x1, x2 + x3 is equivalent to the clause “x1 or 
not-x2 or x3” where each x; is a propositional variable. A 
clause can be expressed as an inequality; the above 
clause is equivalent to 

Over the last year, several researchers of the Reason- 
ing Architectures group at the Microelectronics and 
Computer Technology Corporation (MCC) Artificial In- 
telligence Laboratory have collaborated with an experi- 
enced department head at the University of Texas in 
analyzing the problem of planning the assignment of 
faculty to courses, and revising plans as assumptions 
(about faculty availability and enrollments) change. 
The problem is of interest for several reasons. It charac- 
terizes many types of planning problems where solu- 
tions are assumption based or defeasible and must be 
revised in light of a changing reality. The problem also 
involves a diverse variety of constraints, making it a 
good canonical problem for analyzing different model- 
ing approaches. 

x1 + (1 - x2) + XJ 2 1 

where the truth values true and false are denoted by 1 
and 0, respectively. In general, as has been noted inde- 
pendently by Hinton [7] and Hooker [8], a clause can 
be expressed as the following inequality: 

c,x1+ ..’ + cnxn 2 1 - n(c) 
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Based on an extensive knowledge engineering effort 
over the last year, an expert system has been built and 
implemented in PROTEUS [14]. The expert system 
(called RACS-Revisable Academic Course Scheduler) 
consists of a heuristic rule-based problem solver, which 
contains the expert’s knowledge, and a truth mainte- 
nance system (TMS), which maintains a contradiction- 
free database of assignments. 

In this article, we present an integer programming 
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formulation corresponding to the expert system and re- 
port on our experiences with running this model. We 
are interested in studying whether the integer program- 
ming model can provide the results that derive from 
the reasoning process of the expert, whether it can be 
modified easily to accommodate changes, and how gen- 
eral purpose integer programming techniques do in 
terms of computational performance. 

The remainder of this article is organized as follows. 
In the next section we provide a mathematical formula- 
tion of the problem and describe its general structure. 
This is followed by a description of the problem-solver/ 
TMS architecture that constitutes the expert system. 
We then describe the architectural components of the 
IP implementation and analyze the results from run- 
ning this model, com.paring them with an expert’s deci- 
sions when presented with the same problem data. In 
doing so, we classify some of the limitations of the 
mathematical model and describe why the problem- 
solver/TM!3 combination does not suffer from these 
problems (although it has other drawbacks). We con- 
clude with a list of short- and long-term issues that 
must be addressed in order to design more expressive 
and flexible reasoning systems. 

THE INTEGER PROGRAMMING FORMULATION 
Generating a course schedule requires assigning faculty 
to courses while taking into consideration a variety of 
constraints and preferences. Constraints pertain to 
bounds on the number of sections of courses, minimal 
faculty teaching requirements, dependencies (i.e., 
whoever teaches “lnr’roduction to Logic” must also teach 
“Advanced Logic”), etc:. Preferences are expressed by 
teachers for desired courses and alternatives. In addi- 
tion, the scheduler [chairman) expresses preferences in 
deciding how to deal with conflicts that arise in synthe- 
sizing the plan. After courses have been assigned, class 
rooms and times are scheduled. We do not deal with 
the latter problem in this article. 

The structure of the problem data is presented in 
Figure 1. There are three classes of data involved: 
teacher, course, and term. There are three types of 
teachers (three subclasses), each with specific in- 
stances. Likewise, there are two types of courses and 
instances of these two types, and two terms-fall and 
spring. Constraints are defined at all levels of abstrac- 
tion, in terms of the various classes and instances. 

The formulation of the problem we present is based 
on a detailed problem description that appears in Petrie 
et al. [12]. Many of the constraints in the IP formulation 
have been derived from the rules in the expert system. 
The IP formulation is best presented by first defining all 
subscripts, variables, and coefficients, followed by the 
constraints and objec:tive function. 

Subscripts 
i=1,2 
j=1,2::::: 

n instructors 
m courses 

t = 1, 2 terms (fall or spring) 
k=l,Z..., p categories of courses (for balancing 

curriculum) 
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Variables 

-I 

1 
Xijf = 

if faculty i is assigned to course j in term t 
0 otherwise 

Coefficients 
pj = load factor of course j (depending on its size 

and type) 
T; = teaching load requirement (TL) for teacher i 

Ibj, = lower bound on sections of course j to be 
taught in term t 

ub,, = upper bound on sections of course ,i to be 
taught in term t 

Ib, = lower bound on total sections of course j to be 
taught in year 

Ubj = upper bound on total sections of course j to be 
taught in year 

yj = number of sections of course j to be taught in 
the entire year 

G, = the number of graduate level course:; normally 
offered during term t 

c;,~ = cost of assigning teacher i to course j in term t. 

This can take on three values: 

I 

0 if course j is desired by 
faculty i in term f 

M, a small number if j is an explicit alterna- 
tive 

“jr = Z, a large number if j is an implicit alterna- 
tive or 

if faculty i can teach 
course j in term f, # f 

Actually, another number is added to the value of c to 
incorporate the flexibility of a teacher in terms of his 
capability and propensity to teach alternative courses. 
Specifically, teachers are ranked on a scale of 1 to 5 
(both inclusive) where a 1 expresses least flexibility. 
The combined number is the cost c0efficiec.t and ex- 
presses a “penalty” associated with assigning faculty i to 
course j in term t. We shall discuss this further shortly. 

if j is a graduate level course 
otherwise 

if j is an upper division course 
otherwise 

if j is a lower division course 
otherwise 

if j is a writing course 
otherwise 

if i is a faculty member 
otherwise 

if course j is in category k 
otherwise 

if course j is proposed as a tutclrial 
by i in term t 
otherwise 

if course j has the A-B sequence 
otherwise 
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0 Object 

Course 

M&x S&tre Jones Smith Dhar Ni‘cky Phl 382 Ph‘l386 I Fall187 Fail-88 S&-87 Sir-88 

Phl301 Phl305 

Phl304 Phl358 

FIGURE 1. Data Hierarchy 

Constraints 
1. Number of teachers assigned to a course in each 

term should be between the lower and upper bounds 
on the number of sections of that course: 

for15jSm, andt=1,2 

2. The total number of sections of course j taught in 
the year should be: 

for 1 5 j 5 m, and t = 1, 2 

3. Each teacher must satisfy some minimal teaching 
load: 

m 
2 PjXijt 2 Ti 
,=1 

for i = 1, 2, . . . , n, and t = 1, 2 

4. Only professors can teach graduate courses: 

Xtjl 5 1 - (1 - fi)gj 

fori=1,2 ,..., n, forj=1,2 ,..., m andt=1,2 

5. No professor can teach more than G graduate 
courses per year: 

2 i Xr,tgj 5 G for i = 1, 2, . . , ?I 
,=I 1=1 

6. Course sequence continuity (A-B) constraint: 

ABj(Xij2 - Xijl ) 5 0 

for i = 1, 2, , n, and j = 1, 2, . . . , m 

Constraint 6 says that someone can only teach a B 

course in spring if they taught the A course in the fall. 
If someone must teach the B course if they taught the A 

course in fall, the inequality must be changed to an 
equality. 

7. There must be at least U upper division writing 
courses offered each term: 

“! 
C XijfW,U, 2 U 

,=I 

for i = 1, 2, . . , n and t = 1, 2 

Similar constraints are formulated for lower division 
writing courses and the number of graduate courses 
that must be offered each term. 
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Objective Function 
A variety of objective functions can be formulated for 
this problem depending on the primary goal. One rea- 
sonable goal is to maximize fit, or minimize deviations 
from teachers’ desired courses. To express this, the ob- 
jective function is: 

Minimize z = i 5 i CirrXiit 
i=l 1-1 t-1 

This objective function states that the good of the many 
outweights the good of the few. 

Problem Structure 
If one considers courses as “producing” sections for 
which there are maximum and minimum supplies (ca- 
pacities) and teachers as “demand” points, the problem 
can be viewed as a transportation problem. In fact, with 
constraints 1 and 2 are the objective function, the prob- 
lem is a classical transportation problem. This problem 
has a nice property in that it produces an integer solu- 
tion for integer inpuis. Thus the problem of fractional 
assignments does not arise. 

Unfortunately, the third constraint, relating course 
load factors to teaching load requirements, is a knap- 
sack problem constraint (see page 65 of Garey and John- 
son [6] for a description of this problem). This destroys 
the integer solution property. More importantly, the 
problem becomes NP-complete and its solution time 
varies extremely unpredictably. 

Actually, the real problem is more complex in one 
other way. On occasjion, a teacher may teach more than 
one section of a course. Also, a few courses have sec- 
tions of different sizes (i.e., large, double-large) and 
therefore have different load factors associated with 
them. Modeling this requires modifying the decision 
variable to include another subscript for course sec- 
tions. If this is done, the number of decision variables 
increases significantly thereby increasing the overall 
complexity of an already difficult to solve problem. 
Specifically, the problem becomes a bin packing prob- 
lem which is known to be NP-hard [6]. The expert 
deals with this complexity by assuming default section 
sizes in making assignments to come up with a rough 
initial (usually infeasible) solution, and then for each 
teacher either increasing assigned section sizes in order 
to satisfy a teaching load requirement, or assigning ad- 
ditional sections of a course to a teacher if they have 
been explicitly requested. 

The IP formulation deals with this problem in a 
rather inelegent, though practical way. Specifically, 
since relatively few courses [e.g., PHL 304) have sec- 
tions of different sizes (PHL304Large, PHL304Double- 
Large), these different sized sections are treated as dif- 
ferent courses with (appropriate load factors. Similarly if 
a teacher requests more than one section of a course, 
they are treated as d.ifferent courses (e.g., PHL304-1, 
PHL304-2). In effect, such courses (like PHL304 in this 
example) are treated as object classes; constraints on 
the number of sections of such a course are then stated 

in terms of instances (PHL304Large, PHL304Double- 
Large etc.) of the class. 

EXPERT SYSTEM ARCHITECTURE 
In contrast to the IP model, the expert system has no 
global objective function that guides it toward an opti- 
mal solution. Rather, the process of finding a solution 
involves a series of local decisions that are m3st pre- 
ferred at each point in the problem solving process. 

The expert system consists of two components, a 
problem-solver that employs a generate-and-t.est strat- 
egy, and a TMS. The problem solver is essentially a 
production system consisting of rules whose patterns 
are matched by assertions [propositions) in a global 
database. Each assertion is a problem-solver datum 
such as an assignment of a value to a variable (i.e., a 
decision) or an operation that can result in ca~1 assign- 
ment. The problem data is represented in terms of an 
ISA object hierarchy corresponding to the structure in 
Figure 1. Problem constraints are stated in i.erms of 
predicates that reference objects in the hiera:rchy. For 
example, if the default teaching load for a professor is 9 
credits, this would be represented by the proposition 
“(TL ?F:Professor 9)” where ?F denotes a variable that 
will unify with object instances of type Professor. In 
this case, TL is a binary predicate, which is a slot in the 
Professor object type. With the above proposition, un- 
less the TL for an instance of Professor is otherwise 
specified, its value will be 9. Similarly, the proposition 
“(max-sections PHL304 ?T:Term 10)” states that the 
maximum number of sections of PHL304 in any term is 
10. For details about the frame-based representation of 
PROTEUS, the reader is referred to [15]. 

Apart from the data that are specified as part of the 
problem description, the problem-solver creates data 
corresponding to the assignments in generating the so- 
lution. Each problem-solver datum has a justification 
associated with it. The justification encodes i-he reasons 
for belief in the datum. The task of the TMS is to en- 
sure that the global database is contradiction-free, that 
is, the data are logically consistent (their truth values 
do not result in logical contradictions). 

Before describing the problem-solver it is expedient 
to explain how the TMS works. For an overview of 
truth maintenance systems, the reader should refer to 
survey articles by Reinfrank [16], McAllester [ll], or 
Dhar [4]. However, the fundamental concepts and me- 
chanics underlying the TMS should be clear in the fol- 
lowing description. 

The Truth Maintenance System 
There are two types of TMSs, justification-based [5] and 
assumption-based [3]. We shall concern ourselves with 
the former type. Further, the discussion is in terms of a 
Doyle-style TMS since this is the type of TMS used in 
the expert system. 

In a TMS, every datum has a support statuz: associated 
with it; a status of IN indicates that the datu:m is cur- 
rently believed whereas an OUT indicates disbelief. 
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The values IN and OUT are computed via justifications 
associated with the datum. Each justification has two 
parts, an inlist and an outlist. A justification is consid- 
ered valid if it evaluates to true, that is, if each datum in 
its inlist is IN and each datum in its outlist is OUT. 
Ultimately, all data depend on “ground” level justifica- 
tions of two types, premises and assumptions. In a prem- 
ise justification, the inlist and outlist are both empty. 
This type of justification is always valid. An assump- 
tion justification has a non-empty outlist, that is, its 
belief is justified by a lack of belief in some other da- 
tum. Such a justification is considered non-monotonic 
since its validity depends on a lack of belief in some 
other datum. Finally, deductive justifications are those 
in which the outlist is empty. A datum can have more 
than one justification associated with it. A datum is IN 
if it has at least one valid justification, otherwise it is 
OUT. A datum without a justification (an empty justifi- 
cation) is OUT. 

To illustrate, consider the following example. Upper 
case symbols denote functions and lists of lower case 
symbols refer to data: 

Datum: (assign Sartre PHL304) 
Justification: 

(AND (INLIST (wants Sartre PHL304) 
(available PHL304)) 

(OUTLIST 0)) 

Datum: (assign Kant PHL304) 
Justification: 

(AND (INLIST (wants Kant PHL304) 
(available PHL304)) 

(OUTLIST 0)) 

Datum: (available PHL304) 
Justification: 

(AND (INLIST 0) 
(OUTLIST 
(max-sections-satisfied PHL304))) 

Datum: (wants Sartre PHL304) 
Justification: 

(AND (INLIST 0) 
(OUTLIST (on-leave Sartre))) 

Datum: (wants Kant PHL304) 
Justification: 

(AND (INLIST 0) 
(OUTLIST (on-leave Kant))) 

Datum: (max-sections-satisfied PHL304) 
Justification: () 

Datum: (on-leave Sartre) 
Justification: () 

Datum: (on-leave Kant) 
Justification: () 

The example can be visualized in terms of the graph 
in Figure 2 which shows the justifications of data refer- 
enced in the previous justifications. Each circle corre- 
sponds to a justification, with an arrow pointing to the 
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justified datum, positive arcs connected to the elements 
of the inlist and negative arcs connected to the ele- 
ments of the outlist. The datum “(assign Sartre 
PHL304)” has a two element inlist. The datum “(wants 
Sartre PHL304)” has an empty inlist and a non-empty 
outlist, which is a non-monotonic justification. The 
datum “(on-leave Sartre)” has an empty list of justifica- 
tions and is therefore OUT. If this datum were to ac- 
quire a valid justification (if Sartre were to go on leave), 
its support status and that of those that depend on it 
must be reevaluated. Specifically, the “(wants Sartre 
PHL304)” would become OUT, also causing “(assign 
Sartre PHL304)” to go OUT. 

Actually, in reevaluating the belief status of the data, 
referred to as reuson maintenance, what the TMS really 
does is to ensure that the data as a whole satisfies two 
properties, consistency and well-foundedness. In a consis- 
tent state each datum with at least one valid justifica- 
tion is IN and each one without a valid justification is 
OUT. A state is well-founded if no set of beliefs is 
mutually monotonically dependent; in terms of a la- 
beled network such as that in Figure 2, this means that 
there is no set of arcs from a node to itself all of which 
are labeled positively. 

In the expert system, the TMS works in conjunction 
with the problem solver as follows. Each problem- 
solver action is communicated to the TMS at which 
point the TMS executes a constraint satisfaction proce- 
dure to ensure consistency and well-foundedness. Es- 
sentially, this involves updating the justifications asso- 
ciated with each datum such that the two conditions 
are satisfied. A problem-solver action can lead to a con- 
straint violation which is recorded in the network as a 
contradiction, that is, a special node called contradiction 
becomes IN. When this is detected by the TMS, it tries 
to compute a new labeling that makes the contradiction 
OUT. Control then passes back to the problem solver, 
and the cycle repeats. We shall later describe in more 
detail the workings of the TMS in the context of an 
example. 

The Problem Solver 
The problem solver is a production system consisting of 
a set of rules, some of which are designed to implement 
a generate-and-test strategy. It should be noted that 
there are alternative AI approaches to solving con- 
straint satisfaction problems that employ a somewhat 
different problem solving strategy, namely, the princi- 
ple of least commitment (Marr, [g]; Stefik, [IT]; Waltz 
[18]). In least commitment, the solver avoids making a 
choice that might have to be undone later. In effect, the 
objective is to avoid backtracking that is characteristic 
of the generate-and-test approach. The least commit- 
ment approach usually involves a problem solver iterat- 
ing over “states” or variables that have several possible 
associated interpretations that become successively 
constrained with each cycle. This approach has been 
applied most effectively in computational models of 
vision ([9, 181). A feature of such problems is that there 
is sufficient new information about each state in each 
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IN 

1 Max-se;cz;g$atisfied 1 

OUT 

FIGURE 2. A Consistent Well-Founded State 

iteration so that generate-and-test is in fact a poor strat- 
egy. The assignment problem we have modeled can be 
viewed in this framework as one where the possible 
interpretations for each state (teacher) are already spec- 
ified at the outset as a constrained ordered set of 
courses (the course repertoire). Therefore, in order to 
generate a solution, the problem-solver uses a generate- 
and-test strategy based on this ordering. 

In the following paragraphs we describe the expert 
system architecture using a simplified set of rules that 
play a role in one part of the problem solving process. 
The rules employ a LISP-like prefix notation that is 
used in PROTEUS [13]. In the following rules a ques- 
tion mark followed by a symbol denotes a variable, i.e. 
?XXX is the variable x3:x. Each list in a rule consists of a 
pattern (a form) that is matched against a datum in the 
global database. There are two types of rules, forward 
and backward. When the problem solver has a proposi- 
tion that it is trying to prove to be true, it attempts to 
do so via a backward rule. A “c” symbol denotes a 
backward rule; the form appearing before it is the con- 
sequent and the ones after it are antecedents. In trying 
to prove a goal, the assertions that match the anteced- 
ents become subgoals. Proving all of these subgoals 
completes the proof Iof the original goal. This process is 
known as backward chaining. 

The symbol “+” denotes a forward rule. The forms 
appearing before it are antecedents, the others are con- 
sequents. The forward rule “fires” when assertions 
match its antecedenI. When this happens, the datum 
(instance) corresponding to its consequent is added 
automatically to the global database. This process is 
known as forward chaining. 

In the following rules, the variables used in the pat- 
terns are as follows: 

?prof refers to the current professor under con- 
sideration. 

?sem refers to a semester (either fall or spring). 
?course refers to the course that is under consideration 

for assignment. 
?p-cycle refers to the list of professors who have already 

been considered for ?course. 
?c-cycle refers to the list of courses that have already 

been considered for ?prof. 

The following backward rule states that the goal of 
making a course ?course a chosen course for professor 
?prof in semester ?sem can be achieved if that course is 
actually desired by the professor unless that course has 
already been considered (and presumably failed) for 
that professor: 

(Mark-desired-course-as-chosen 
;;name of this rule, rule 1 

(chosen-course ?prof ?course 
?sem ?c-cycle) 

(desired-course ?prof ?course 
?sem ?c-cycle) 

(unless (element ?course ?c-cycle))) 

The following forward rule would fire whenever 
there is an assertion stating that courses be assigned to 
a professor: 

(Select-Course ;;rule 2 
(assign-courses-to-prof 

?prof ?sem ?p-cycle ?c-cycle) 
(chosen-course ?prof ?course 

?sem ?c-cycle) 

(attempt-to-satisfy 
?prof ?course ?sem ?p-cycle 
?c-cycle)) 

In the previous rule, the datum corresponding to the 
consequent would have the two data items matching 
the first two antecedent forms on its inlist. 

The remaining rules can be interpreted similarly. 
Each form is accompanied by a comment wlenever 
necessary. 

(Semester-Succeeds ;;rule 3 
(attempt-to-satisfy 

?prof ?course ?sem ?p-cycle 
?c-cycle) 

(unless 
(unacceptable-for-semester 

?sem ?prof ?course ?p-cycle 
?c-cycle)) 

(successful 
?prof ?course ?sem ?p-cycle 
?c-cycle)) 

; ;mark as successful 

In this rule, a datum corresponding to the conse- 
quent would have the datum matching the first form on 
its inlist and the datum matching the form in the 
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“unless” part on its outlist. In effect, it would have a 
non-monotonic justification. 

Semester-Fails ;;rule 4 
(attempt-to-satisfy 

?sem ?prof ?course ?p-cycle 
?c-cycle) 
..If this semester is not acceptable 

(unacceptable-for-semester 
?sem ?prof ?course ?p-cycle 
?c-cycle) 

failed-semester 
?sem ?prof ?course ?p-cycle 
?c-cycle)) 

(Contradiction-detection-type-l 
;;rule 5 

(failed-semester 
?sem ?prof ?course ?p-cycle 
?c-cycle) 

(C03NTRADICTION) ) 

Constraint knowledge is also encoded as rules. These 
are used to enforce teaching loads, bounds on the num- 
ber of sections, and other requirements such as those 
stated in the IP formulation. For example, the following 
rule (in conjunction with other rules such as rule-3 and 
rule-J) enforces the upper bound on the number of 
sections for a course during a particular semester: 

(Course-section-check ;;rule 6 
(unacceptable-for-semester 

?sem ?prof ?course ?p-cycle 
?c-cycle) 

(semester-max-constraint-satisfied 
?course ?sem)) 

In addition to the assignment and constraint checking 
types of rules, the system also contains rules for contra- 
diction resolution. When a contradiction arises, the 
TMS first finds a culprit to be made OUT to resolve the 
contradiction. The process of finding a culprit is a re- 
cursive one that involves determining the ground level 
data (the assumptions) that support the contradiction. 
The contradiction is resolved by invalidating all valid 
justifications of one of its supporters, called the culprit. 
This involves justifying some belief on the outlist of 
the justification being invalidated. For example, if an 
attempted assignment fails, one way to resolve the 
problem is to exchange that (chosen) course with an 
alternative course that that professor can teach. The 
following rule shows the use of a predicate, FIX, that is 
designed to do contradiction resolution as described 
above. In [13] terminology, a datum that unifies with its 
first argument is referred to as the target, one that uni- 
fies with its second as the fix-culprit, and the third as 
the fix-elective: 

(Fix-via-alternative-course ;;rule 7 
(fix (failed-semester ?sem ?prof 

?course 
?p-cycle 
?c-cycle) 

(chosen-course ?prof ?course 
?p-cycle ?c-cycle) 

(exchange ?alt-course ?course 
?prof 
?sem ?p-cycle ?c- 
cycle)) 

Llternative-course 
?prof ?course ?alternatives) 

(element ?alt-course ?alternatives)) 

If an exchange is successful in resolving a contradic- 
tion, the following rule makes the alternative course a 
desired course, which in turn causes the first rule to 
make it chosen, thereby repeating the cycle. 

(Try-An-Alternative ;;rule 8 
(exchange ?alt-course ?course ?prof 

?sem ?p-cycle ?c-cycle) 

;;mark the alternative course as de- 
sired 
;;(this will cause the 

Select-Course--Rule to fire 
(desired-course ?prof ?alt-course) 

;;reject the original course. 
(rejected-course ?prof ?course 

?p-cycle ?c-cycle)) 

An Example 
In order to illustrate how the rules above work, let us 
consider a scenario where among other data, the fol- 
lowing are in the database: 

Sartre wants to teach ph1304 in fall: 
(desired-course sartre ph1304) 

Sartre has as alternatives to ph1304 in the fall, ph1310 
and ph1318: 

(alternative-course sartre ph1304 fall (ph1310 ph1318)) 

Suppose that the maximum allowable sections of 
ph1304 have already been allocated for fall: 

(semester-max-constraint-satisfied phl304 fall) 

Suppose Sartre is now up for consideration (Anselm has 
already been considered for ph1304): 

(assign-courses-to-prof Sartre fall (Anselm) ()) 

The rules try assigning ph1304 to Sartre in the fall 
and fail because the maximum constraint has been sat- 
isfied for the term. This creates a contradiction as 
shown in Figure 3. For simplicity we have truncated 
the data, assuming that they refer to Sartre in the fall 
term. 

In the dependency network in Figure 3, the contra- 
diction is IN. The TMS attempts to make the contradic- 
tion OUT by finding a culprit and invalidating one of 
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its in-supporters. In this case, the culprit is “(chosen- 
course 304)” (it unifies with the fix-culprit in rule 7) 
and its in-supporter” (desired-course 304)” is invali- 
dated by putting the “(exchange 310 304)” datum on its 
outlist, and “(desired-course 310)” gets a valid justifica- 
tion by the exchange datum (via rule 8) on its inlist. 
Finally, the contradiction is put on the outlist of ex- 
change which makes it (the contradiction) OUT. Part 
of this new stable and well-founded state is shown in 
Figure 4. 

In summary, the dependency network maintains the 
reasons for assignments. This includes desired as well 
as unexpected assignments such as the one resulting 
from the exchange effected by rule 8. Whenever a justi- 
fication for some datum becomes invalid, the TMS 
computes what beliefs must be revised in order to re- 
store consistency and well-foundedness. It is important 
to recognize that the problem of contradiction resolu- 
tion is often an underconstrained one, that is, there are 
many possible labelings that satisfy consistency and 
well-foundedness. Rules 7 and a provide one way of 
doing it using domain-specific knowledge. 

THE IP ARCHITECTURE 
The integer programming formulation consists of about 
TOO binary variables and 300 constraints. The model 
has been implemented using the ZOOM (Zero One 
Optimization Model:1 library of the XMP package [lo]. 
XMP includes a mocleling language, XML, for express- 
ing the problem. 

ZOOM solves an integer program as follows. The LP 
relaxation (ignoring integrality) is first solved. After an 
LP solution is obtained, a heuristic procedure, called 
Pivot and Complement (Balas and Martin [l]) attempts 

to find an integer solution. Basically, this involves a 
sequence of pivot operations which put all slacks into 
the basis at minimum cost. If a feasible integer solution 
is found, it is then improved by flipping variables to 
their opposite bounds. 

As shown in Figure 5, we have implemented a pre- 
processor that translates the input data used by our 
expert system into the ZOOM modeling language, XML. 
The XML interpreter generates an MPS file that is used 
by ZOOM. The preprocessor takes as input problem 
data expressed in terms of the object hierarchy of Fig- 
ure 1. Expressing the constraints in XML requires the 
preprocessor to translate them into algebraic expres- 
sions stated in terms of decision variables. For example, 
a constraint such as “A faculty member can -:each at 
most 1 graduate course per year” involves searching the 
ISA hierarchy to locate all instances of faculiy, graduate 
courses and terms, defining the decision variables, and 
writing out the constraint. In this way, only decision 
variables essential to the formulation are defined. The 
number of decision variables can be further reduced by 
analyzing each teacher’s course repertoire and exclud- 
ing variables corresponding to impossible assignments. 
For example, if Frege’s repertoire slot does not include 
ph1381, he can never be assigned this course, and 
there is no point in defining a decision variable for 
this assignment. 

The results produced by ZOOM are translated into a 
schedule for the user. Although not implemented by us, 
it is also possible to produce other summaries and an- 
swer questions using the generated schedule and the 
object hierarchy. For example answers to questions like 
“how many faculty are teaching undergradtmte courses 
that meet twice a week,” can be very useful to the 
decision maker. 

The preprocessor and translator are both imple- 
mented in Common Lisp. The experiments were car- 
ried out on a SUN-3 workstation, which is also one of 
the platforms on which the expert system has been 
developed. 

ANALYSIS OF RESULTS 
The data used by the ES and IP models was Iprovided 
by the expert. It consisted of profiles of his departmen- 
tal faculty, their teaching preferences, and departmen- 
tal course requirements over the last two years. The 
expressiveness and performance of the two models 
could therefore be compared with the real plans that 
had been formulated by the expert and his assistants 
based on actual data. In this section we present an 
analysis of the results produced by the IP model rela- 
tive to the expert model on the available data. 

Performance 
Like many integer programs, we found the solution 
time of the IP model to be highly unpredictable, vary- 
ing from a few minutes to a few days. In particular, it 
was extremely sensitive to the teaching 1oa.d (TL) con- 
straint (number 3 in the IP formulation, the ‘knapsack 
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constraint). Specifically, varying the value of T, in the 
range of interest (i.e. the range in which solutions are 
feasible or “almost feasible”) by as little as 2 percent 
resulted in orders of magnitude variations in solution 
time. This was indicative of the tightly constrained na- 
ture of the problem-in this case, the bounds on the 
numbers of sections of each course (constraint 1) were 
such that it was difficult to satisfy that constraint and 
the minimum teaching local requirements simultane- 
ously. 

In all cases, when a solution was found, it was ob- 

Assign- 
courses 

to-prof (IN) 

Desired- 
course 

310 (IN) 

tained quickly by the pivot and complement heuristic 
[l] which is incorporated in the ZOOM code. It always 
took under five minutes on a dedicated WN-3. If a 
feasible solution was not found with this heuristic, it 
was not found at all.’ Further, the branch and bound 
algorithm, which ZOOM resorts to if the heuristic fails, 
never found a solution even after many hours of run- 
ning time. This is because the number of fractional 

’ The heuristic procedure never found a solution once it started executing its 
rounding procedure. (The reader interested in the description of these heuristics 
is referred to [l] and [lo]. 
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valued variables remaining after the LP solution, typi- 
cally between 300 and 500, gives rise to an enormous 
search tree. 

In contrast, the expert system’s solution time was less 
volatile. Under identical conditions on the SUN-3 it 
usually takes between 1 and 2 hours for it to generate a 
solution if one exists. If it cannot find one, it generates 
a partial solution along with a history (in the form of 
the dependency network) which can be examined to 
determine why a complete solution could not be found. 
This is an important advantage of the expert system, 
which we return to later. 

Control of Reasoning 
In general, the integer program generates a plan that 
has about three-quarters of the same assignments as 
those made by the e.xpert. In some cases the expert was 
pleasantly surprised by its decisions, but in a larger 
proportion of the castes the differing assignments were 
judged to be undesirable. The most common manifesta- 
tions of such undesirable results were cases where 
teachers had too many preparations, too few prepara- 
tions, and an unnecessarily heavy load of students (e.g., 
two huge classes that were not required for the TLs). 

Based on the expert’s analysis of the solutions gener- 
ated by the IP, we have identified three reasons for the 
differing assignments which we call single objective 
limitations, compiled knowledge limitations, and global 
optimization limitations. 

Single Objective Limitations 
The objective function used in the formulation ex- 
presses one goal of the decision maker: to give all 
teachers their desired courses to the extent possible. 
However, in reality there are other goals that the ex- 
pert tries to satisfy simultaneously. One of these is to 
ensure that as far as possible, each teacher’s load is as 
close as possible to the minimum required. What is 
required, therefore, is a multi-objective formulation. 
Unfortunately, this makes solution extremely difficult. 
Even if the problem is solvable, a “frontier” of optimal 
solutions is generated which must be evaluated by the 
decision maker. For large problems involving discrete 
choices, analyzing the goodness of alternative sets of 
assignments can be (difficult. 

While the single objective formulation works well in 
most cases, it sometimes produces undesirable results. 
For example, consider two teachers, Helga and Hegel, 
who have been assigned courses that result in TLs of 9 
and 12 respectively and that 9 is the minimal require- 
ment. Assume that Hege1 is more flexible than Helga. 
Now, if a section of :Ethics needs to be taught and Helga 
and Hege1 are the only qualified teachers, Hege1 will 
be assigned since his cost coefficient is lower than 
Helga’s. Clearly, if balancing loads is a concern, the 
course should be assigned to Helga. 

It is possible to alleviate this problem to some extent 
by expressing the objective function as a constraint, but 
this too has severe limitations. One must decide on a 
reasonable TL upper bounds for each teacher. In this 

example, if Hegel’s upper bound is 14, the course will 
be assigned to Helga, as desired. However, setting such 
bounds is difficult. If an inappropriate value is used, 
feasible solutions can be excluded. 

In contrast, it is relatively easy to encode knowledge 
about multiple objectives in the expert system rules. 
For example, in the Hegel/Helga case, it is possible to 
have in the antecedent of a rule that attempts to assign 
courses (such as the select-course rule) a form such as 
“(least-loaded ?prof))” which would result in the rule 
condition becoming true (unification succeed.ing) only 
with the least-loaded professor. Such rules ensure that 
“locally good” decisions will be made but they do not 
guarantee a global optimal solution. We shall elaborate 
on this point in the following section. 

Compiled Knowledge Limitations 
The behavior of the system and the solution are very 
sensitive to the cost coefficients. Each teacher has three 
cost values, corresponding to the penalty associated 
with assigning a desired course, an explicit alternative, 
and an implicit alternative (a course that the teacher is 
capable of teaching but did not ask for). The values are 
organized as shown in Table I. 

Observing the first column, we see that a teacher 
with less flexibility (CFI = 1) will get preference for a 
desired course over a teacher that has more flexibility. 
Moreover, the penalty associated with giving, the for- 
mer an explicit alternative instead of a desi.red course 
(9) is higher than doing it for the latter (1). :For conflict- 
ing desired courses, if the less flexible teacher gets the 
desired and the more flexible one gets an explicit alter- 
native, the cost is 1 + 6, otherwise it is 5 + 10. Similar 
reasoning applies to the situation where there are con- 
flicts in the explicit alternatives. Finally, it should be 
noted that the coefficients are designed so t.hat a de- 
sired plus explicit alternative combination is always 
preferred to a desired plus implicit alternative combi- 
nation. 

CFI = 1 
CFI = 2 
CFI = 3 
CFl=4 
CFI = 5 

TABLE I. Organized Course Values. 
- 

Desired Explicit alt. Implicit alt. 

1 10 19 
2 9 18 
3 8 17 
4 7 16 
5 6 15 

The basic problem with the cost coefficients is that 
they incorporate a lot of compiled knowledge about 
preferences, flexibility and trading criteria which 
makes the behavior of the system somewhat unpredict- 
able. We have found that changing the cost values and 
differentials can have significant unforeseen (desirable 
or undesirable) consequences on the assignments in the 
following ways. When the differentials between explicit 
and implicit alternatives are made larger, the penalty 
associated with assigning implicit alternatives is high, 
hence fewer of these are assigned. However, this also 
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has the effect of reducing the desired courses assigned 
since in conflicting situations the penalty associated 
with assigning explicit alternatives relative to the de- 
sired courses is low. When both types of differentials, 
desired-explicit and explicit-implicit, were increased, 
there were a few changes in assignments. However, we 
were not able to determine a general pattern underly- 
ing these changes nor the reasons for the changes. 

Another related difficulty with compiled knowledge 
is that of encoding complex preferences in it. For exam- 
ple, it is usually preferable to teach two instead of three 
courses but if someone needs to teach three (to make 
the required TLs) it is preferable to have two sections of 
one course and one section of another instead of one 
section each of three different courses. This is because 

there is a diminishing marginal effort associated with 
teaching an additional section of a course. Such knowl- 
edge is not expressed in the coefficients of the objective 
function, but it is important in matching the expert’s 
behavior. 

Another type of knowledge that is difficult to express 
either in the constraints or the objective function is one 
involving unusual situations, that is, an action that is 
rarely undertaken but is a good one under some cir- 
cumstances. For example, a seminar required in the 
spring term would not normally be swapped into the 
fall term except under certain unusual circumstances. 
Clearly, it is not appropriate to exclude such actions via 
constraints. Nor is it appropriate to attach heavy penal- 
ties to such actions, since this would prevent them 
from being taken even under appropriate conditions. In 
the expert system, unusual situations can be left to the 
contradiction resolution (backtracking) by embedding 
the appropriate knowledge required for backtracking in 
fix rules (such as rule 7). 

The examples above bring out some of the differ- 
ences in how the IP and ES models incorporate problem 
solving knowledge. The ES proceeds locally in a GPS- 
like manner, reducing the differences between an 
evolving partial solution and the requirements based on 
preference information encoded as heuristic rules. In 
effect, the rules are sensitive to the state of the evolving 
solution, giving the system builder considerable control 
over inference. 

It is easy to define rules that encode knowledge about 
the types of preferences discussed earlier. That is, pref- 
erences for assigning additional sections of a course be- 
fore considering a new course, preference in unusual 
situations, or for assigning courses to less loaded teach- 
ers as discussed earlier. In the IP formulation, however, 
such knowledge is compiled into the coefficients. Given 
the inevitable loss of information resulting from this 
transformation it is not surprising that there is a gen- 
eral loss in control over reasoning with the IP model. In 
other words, in the IP formulation, all such preference 
knowledge is usually compiled into one global objective 
function, which controls how the search space is ex- 
plored. We will now comment on some of the conse- 
quences of global optimization. 

Global Optimization Limitations 
While the minimization of cost is designed to maximize 
the extent to which teachers are assigned desired 
courses as a whole, the system has a tendency to sched- 
ule sections that are as close as possible to the lower 
bound since this also minimizes cost. This can have the 
effect of not assigning such courses to teachers that 
desired them. To illustrate, if at most one section on 
Ethics should be scheduled, the system has a tendency 
to schedule none. This turns out to be undesirable in 
situations where a professor requested Ethics but was 
assigned an alternative instead. 

Essentially, this problem would be avoided if in the 
case of a professor asking for that course, the lower 
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bound is set to one instead of zero. In effect, the con- that the constraints were not satisfiable. For example, if 
straint is conditional on the data. However, deciding three sections of a course were required and only two 
the appropriate bound based on the input data is tricky people were qualified to teach it, clearly, no solution 
since tightening it could rule out feasible solutions or would be found. Secondly, we found that the knapsack 
interfere negatively in unforeseen ways with others’ constraints, on TLs, were often too tight for it to find a 
assignments. feasible integer solution. 

The only way to express constraints as conditional on 
the data is to use non-monotonic justifications. For the 
example above, a rule with an “(unless . . . )” form 
could be used to set the bound. Then, an assignment 
would have the datum matching the condition in the 
unless in its outlist, making it clear that one section was 
scheduled since a professor desired it. If that professor 
were to go on leave, invalidating the desire for that 
course, the TMS could automatically validate the da- 
tum specifying the bound of zero. In general, a TMS is a 
natural mechanism for modeling default reasoning of 
this type. 

We solved the first problem by analyzing, the behav- 
ior of the expert system. While that system i.s also often 
unable to find a feasible solution, it generates a useful 
partial solution indicating those “holes” in the schedule 
that still need to be filled. 

Another consequence of global optimization is the 
lack of explanation for its decisions. In analyzing the 
results of the IP we were generally able to infer after 
analyzing the data i:n detail, why a teacher had not 
been assigned a desired course. For the most part, this 
happened when there was competition for a limited 
number of sections. Often, however, the rationale for 
assignments could n.ot be determined even after consid- 
erable analysis of the constraints, preferences and flexi- 
bility indices, In suc:h cases, global optimization essen- 
tially obscures the reasons for assignments. 

Partial solutions are extremely useful to the decision 
maker. There is no guarantee that the skills of the 
teachers will cover the requirements (particularly if a 
significant number of faculty are on leave). In such 
cases, and the decision maker needs to know what the 
holes are. Typically, there are several ho1e.s in the 
schedule in the initial draft. These are patched by hir- 
ing visiting professors, lecturers, or graduate students. 
In this respect, the integer program is deficient because 
if it fails to find a feasible integer solution, it runs vir- 
tually forever and finally provides no useful informa- 
tion to the decision maker. What is required in such 
cases is an integer solution which even though not 
feasible, is close to feasible. 

In contrast, the ES attempts to make good local as- 
signments whose justifications are recorded by the 
TMS. The justifications are extremely useful for pur- 
poses of explanation and for incremental revision of 
existing decisions in an evolving solution. Although the 
ES has no notion of a global optimum, the more the 
knowledge provided to the system for resolving con- 
flicts, making choices, etc., the better the quality of its 
solution. The factors that determine whether the expert 
system will work better than the IP model are the ex- 
tent to which it is important to specify complex prefer- 
ences of the type described in the preceding discussion, 
and the ease with which such knowledge can be spec- 
ified by the expert, These two factors interact in a 
complex manner. If complex preferences need to be 
specified, it is usually indicative of the complexity of 
defining optimal solutions, and hence the limitations of 
the objective function as the mechanism driving the 
search. However, in such situations the expert also 
finds it increasingly difficult to specify the preference 
knowledge in terms of abstractions. Over time, this 
can result in a situation where interactions among the 
various pieces of knowledge become very complex, 
thereby eroding the modularity of the knowledge base. 

Even though the results of the expert systcsm pointed 
us to the section requirements constraints to loosen, we 
still did not manage to obtain a solution unt:il we sim- 
plified the problem by excluding the TL constraints, 
solving it as a transportation problem. We then intro- 
duced lowered TL requirements. As we mentioned ear- 
lier, we found that the ability of the system to find an 
integer solution was extremely sensitive to the TL 
value. On analyzing the expert’s behavior, we found 
that he dealt with the TL requirements by first ignoring 
them, making assignments that put teachers’ loads in 
the “ballpark,” and then massaging the schedule to sat- 
isfy the requirements. For the most part, this massaging 
consists of giving teachers larger sections which have 
higher credits (instead of giving additional courses 
which increase the number of preparations) or assign- 
ing them light administrative responsibilities for which 
they earn small amounts of credit. 

PLAN REVISION 
A major drawback of the IP model is its lack of support 
in making revisions to a plan whose underlying as- 
sumptions often change. Planning course assignments is 
based on assumptions about enrollments (which deter- 
mine the numbers of sections planned), and faculty 
availability. If enrollments turn out to be higher than 
expected, additional sections must be scheduled. If a 
faculty member gets a grant or goes on leave, substitute 
teachers must be found. In all such cases, it is impor- 
tant that the overall plan be perturbed as little as 
possible. 

The Need for Partial Solutions 
A major problem during the early runs of the IP model 
was its inability to find a feasible integer solution even 
after many hours of running time. Two factors contrib- 
uted to this situation. Firstly, the data were often such 

Several types of actions can be taken by the decision 
maker when assumptions change. Depending on the 
change, the action can include hiring assistant instruc- 
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tors, hiring visiting professors, and swapping assigned 
courses among faculty. Hiring a visitor is usually fea- 
sible only if there is sufficient time to negotiate a 
contract. 

Some changes are easy to manage. For example, if a 
faculty that goes on leave was teaching low level un- 
dergraduate courses, instructors can be hired to fill in. 
However, if graduate courses are involved revision be- 
comes more complex since such courses can be highly 
specialized, making it difficult to find faculty qualified 
to teach them. Also, faculty are limited to a maximum 
of one graduate course per year. In summary, determin- 
ing who to assign to an unassigned graduate course can 
be difficult, depending on how many faculty are quali- 
fied to teach the course, how flexible they are, whether 
they are already scheduled to teach a graduate course, 
and whether substitutes can be found for such courses. 

The IP model supports revision as follows. The deci- 
sion maker must specify what subset of the existing set 
of assignments can be changed. The complement set is 
considered fixed; the assignments in this set are there- 
fore added as constraints and the problem is re-solved. 
In effect, the decision maker must specify what part of 
the plan is fixed and what is variable. Further, the 
decision maker must make a judicious choice in speci- 
fying what combination of lecturers, Assistant Instruc- 
tors and visiting professors should be considered to fill 
the newly created holes in the plan. 

Unfortunately, it is usually difficult for the decision 
maker to specify in advance with any degree of confi- 
dence which parts of the plan should be considered 
variable. Rather, the process of figuring out what to 
change requires negotiation, the results of which serve 
as further input in determining what parts of the model 
can be considered changeable. In effect, figuring out 
what should be changed is where support is most needed. 
In this sense, the IP model requires the decision maker 
to do too much. Specifically, if changes are to be mini- 
mal, he must keep the variable set small, otherwise the 
new solution can contain too many changes. However, 
this small set of changeable assignments should also 
result in a solution being found, otherwise the exercise 
is of little use. Determining the appropriate set can re- 
quire considerable trial and error; finding it is therefore 
the really difficult part of the problem where support is 
most needed. 

Another aspect of revision is that certain changes 
actually require that changes be made to the con- 
straints. For example, if an instructor who goes on 
leave was teaching a course that is not strictly required, 
it is usually not re-assigned to anyone when the IP 
model is run with the new data since the objective is to 
minimize cost. Clearly, this is problematic if that course 
has already been listed as an offering. In such cases, 
what is really required is that the constraints be modi- 
fied to state that the listed course must be offered. 

In order to support revision, it is necessary that a 
system actually suggest alternative courses of action to 
the decision maker. For this to be possible, it is neces- 
sary for it to record the rationales for existing assign- 

ments. For example, if an instructor I, who goes on 
leave was teaching X1 which was desired by but not 
assigned to I, (perhaps due to an exchange like the one 
illustrated in the example), it might make sense to con- 
sider whether I, should now teach X1. This type of 
reasoning is supportable with a truth maintenance sys- 
tem. In a TMS, for example, one of the justifications for 
the assignment I2 t Xz would be the fact that I, was 
assigned X1. When this latter proposition is no longer 
true, the justification for I2 + X1 becomes invalid, mak- 
ing it possible to assign X1 to I:!. This process can be 
repeated recursively until a consistent set of assign- 
ments is found. 

In practice, however, it would probably be undesira- 
ble for the above process to happen automatically for 
two reasons. Firstly, it is conceivable that taking away 
X2 from I2 could create an even bigger problem if it is 
difficult to find someone to teach X1. Secondly, it 
would not make sense to take such a course away if a 
significant amount of preparation has already gone into 
preparing for that course or if the teacher assigned to it 
is inflexible. 

Regardless of these limitations, a TMS should prove 
to be useful. Even if it fails in repeated attempts at 
finding a solution, the reasons for failure can be re- 
corded and presented to the decision maker. In this 
way, even if the TMS does not find a solution, it pro- 
vides useful information that can be used to find a 
solution. Since it is desirable to try several avenues 
simultaneously, an ATMS [3] might be suitable even 
though in principle any TMS could be used. 

The problem of determining how breakable an 
assignment is is a much more difficult problem. It 
depends on the flexibility of the teacher, how suited 
substitutes are for a course, and how much time has 
already gone into preparation. We are currently in the 
process of trying to formalize these concepts so that 
they might be representable and used by a TMS. 

DIRECTIONS FOR FUTURE WORK 
It is clear that the optimization problems solvers such 
as ZOOM must be made much more flexible if they are 
to prove useful as decision support tools for practical 
problems. Based on our experience with the experi- 
ments and analysis of expert behavior, we feel that 
there are at least two directions that are worthwhile 
pursuing. First, a more expressive interface is required 
which allows the problem data to be specified as “natu- 
rally” as possible. Second, it should be possible to aug- 
ment ZOOM so that it provides more useful output to 
the user. 

On the interface front, we have found that specifying 
problem data in terms of the object hierarchy and de- 
fining constraints in terms of such objects is a very 
useful functionality for the user. In effect, we have 
built a layer on top of XML. Currently languages like 
XML and GAMS are used directly as specification lan- 
guages. While they (especially GAMS) allow the user to 
specify the problem in terms of a compact notation, 
they are still relatively low-level utilities. We feel there 
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are significant productivity gains possible by providing 
a higher level modeling environment where a user can 
specify an arbitrary class hierarchy and constraints 
over it, and have the mathematical formulation gener- 
ated automatically. We are currently working on the 
primitives that such an environment must have for 
it to be able to work for all mathematical programming 
problems. 

We also feel it should be able to build in a truth 
maintenance functionality into the optimization pack- 
age, making it more flexible and useful to the user. In 
ZOOM, for example, considering that the branch and 
bound is usually unsuccessful (in our case it was always 
unsuccessful), it makes sense to try and generate an 
“almost feasible” solution in cases when the Pivot and 
Complement heuristic fails. 

When the heuristic fails, the system knows which 
constraints are being violated (in our problem these 
were the knapsack constraints). At this point, if the 
number of non-integer variables is not too large (i.e. 
less than about SO), the system could perform a local 
search around these variables only (keeping values of 
all integer variables fixed), that is, attempt different 
combinations of integer values for the non-integer vari- 
ables, and keeping a record of the contradictions. Such 
a history could be used by the system [or the user) to 
decide which constraints to loosen in order to generate 
a feasible solution. In effect, this boils down to aug- 
menting the Pivot and Complement heuristic with a 
primitive truth maintenance system. Actually, this is 
quite similar to what the expert does in overcon- 
strained situations (i.e. ignore TLs, obtain a solution, 
and gradually introduce the TLs). By enabling the sys- 
tem to loosen constraints in situations where no solu- 
tion is in sight, it can begin to approximate the problem 
solving behavior of experts. As a next step in this re- 
search we are considering ways of incorporating a truth 
maintenance functionality into optimizers to handle 
such situations. 
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