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1 Exercises from Stinson’s book

1.1 Exercise 5.11 p 220

1.1.1 Inverse operations

To prove that encryption and decryption are still inverse operations with:

λ(n) =
(p− 1)(q − 1)

gcd(p− 1, q − 1)
=

φ(n)
gcd(p− 1, q − 1)

we will compute
(
xb

)a:

(
xb

)a ≡ xtλ(n)+1 mod n ≡ xtλ(n) × x mod n
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(
xb

)a ≡
(
xλ(n)

)t

× x mod n
(
xb

)a ≡ (1)t × x mod n ≡ x mod n

So we have to prove that xλ(n) = 1. We know that p and q are primes, so thanks to Fermat, we
have:

xp−1 ≡ 1 mod p

xq−1 ≡ 1 mod q

By definition of φ(n), gcd ( p - 1 , q - 1 ) appears twice in his factorisation : in the one of p-1
and the one of q-1. So if we consider the factorisation of λ(n), we are going to find the complete
one of p and the one of q-1 without the gcd. So we can deduce that:

xλ(n) ≡ x(p−1)× q−1
gcd(p−1,q−1) ≡ 1 mod p

With the same reasoning, we deduce:

xλ(n) ≡ 1 mod q

p and q are relatively primes so we can use the Chinese Reminder Theorem to set:

∃!x, xλ(n) ≡ 1 mod pq ≡ 1 mod n

So we have proved that xλ(n) ≡ 1 mod n and that enables us to finish the original demonstration.

To conclude, we have found the original message so encryption and decryption are still inverse
operations.

1.1.2 Computation of a

Given p = 37 and q = 79, we can find φ(pq) = 2808 and with b = 7, we have:

7× a ≡ 1 mod 2808 ⇒ 7a = 2808× t + 1

With t = 6, we obtain a = 2407 using the original RSA.

Using the modified cryptosystem, we have λ(n) = 468, so:

7× a = 468× t + 1

With t = 1, we obtain a = 67.

1.1.3 In Zn

Let me remind you that Z∗n = {x/gcd(x, n) = 1} and Zn = Z∗n ∪ {x/x = kp}

So we need to prove that the encryption/decryption is still valid for multiples of p (it would be
the same for q):

d(e(kp)) = d
[
(kp)b mod n

]

=
[
(kp)b mod n

]a
mod n

= (kp)ab mod n
= kp mod n

We can obtain the last line because of the first question. Therefore, the encyption/decryption
is still valid in Zn.
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1.1.4 MapleTM

This is my first algorithm when I read the questions, but it doesn’t return any p and q :

find := proc():
roll := rand(10ˆ99..10ˆ100):
p := roll():
q := roll():
while (gcd(p-1,q-1)< 10ˆ74 ) do:

p := roll():
q := roll():

end do:
return p,q:

end proc:

So I took the problem upside down :

find := proc():
roll := rand(10ˆ74..10ˆ75):
gcd := roll():
p := 3*10ˆ25*gcd:
q := 4*10ˆ25*gcd:
while (not (isprime(p+1)) or not (isprime(q+1)) ) do:

gcd := roll():
p := 3*10ˆ25*gcd:
q := 4*10ˆ25*gcd:

end do:
return p+1,q+1:

end proc:

and I finally find:
p = 588660476800131775105978461149584613361071240656615403980188348579939200766

0000000000000000000000001
q = 784880635733509033474637948199446151148094987542153871973584464773252267688

0000000000000000000000001

1.2 Exercise 4.5 p 151

1.2.1 Polynom of degree 2

To solve the SecondPreimage problem, assume we have:
{

x ⇒ y = x2 + ax + b mod 2m

x′ ⇒ y = x′2 + ax′ + b mod 2m

So
y = x2 + ax + b = x′2 + ax′ + b

⇒ x2 − x′2 + ax− ax′ = 0

⇒ (x− x′)(x + x′ + a) = 0

x = x′ or x′ = −x− a

We can find a second preimage by computing −x− a, which is really easy.
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1.2.2 Polynom of degree d

I first try to solve the SecondPreimage problem in the same way as before, but I finally ob-
tained:

i∑

j=0

xix′i−j ≡ 0 mod 2m

which doesn’t help us to find a second preimage to x.

I was told that the problem is easy to solve by using the fact that n > m, but I was not able to
figure out the problem with this hint.

1.3 Exercise 7.6 p 312

1.3.1 Verification

To verify this new signature scheme, we have to compute βδγγ :

βδγγ = (αa)(x−kγ)a−1

γγ mod p

= (α)(x−kγ)
γγ mod p

= (α)(x−kγ) (
αk

)γ
mod p

= αx mod p

1.3.2 Computational advantage

In the original El Gamal Signature Scheme, we have to compute the multiplicative inverse of
k ofr each message.

In this modified scheme, we can invert a once for all message. So it is computaionally faster.

1.3.3 Security comparison

We have seen in class that behind the original El Gamal Signature Scheme, there is always the
Discrete Logarithm Problem (DLP). Let’s now see what there is behind the modified scheme :

Given x, set a γ and then try to find δ with:

βδ = αxγ−γ mod p

which is equivalent to the DLP.

Given x, set a δ and then try to find γ with:

γγ = αxβ−δ mod p

which seems to be easier than the DLP.

Given x, try to simultaneously find δ and γ with:

βδγγ = αx mod p

which is equivalent to the DLP.
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So we can conclude that the modified scheme is less secure than the original El Gamal.

2 Blum-Goldwasser

2.1 Decryption / Verification

Concerning the decryption, the modification does not affect encryption so the decryption is
the same as in the original cryptosystem.

The verification consists in reproducing the same operations described in the exercise and com-
pare w obtained with the one transmitted.

2.2 Cyphertext attack

In the cyphertext attack, Oscar has an temporary access to the decryption machinery and he
can compute dec ( y ) = x. If this modified cryptosystem fails under this attack, it means that Oscar
can find the private key p and q. But he can also break the system with the least significant bit of
x2, but I was not able to deal with that information.

3 Jacobi symbol and least significant bit

3.1 Conditions on p and q

We know that: (
n− 1

n

)
=

(
n− 1

p

)(
n− 1

q

)
= +1

So
(n− 1) ∈ QRp ⇒ (n− 1) ∈ QRq

(n− 1) ∈ QNRp ⇒ (n− 1) ∈ QNRq

3.2 Entropy

To clarify the formulae, we have to prove that the proportion of odd and even number doesn’t
change because of the Jacobi Symbol of Me.

We know that if
(

n−1
n

)
= +1, the number of odd and even number are equally distributed in

the set of x such that
(

x
n

)
= +1.

So let’s consider a bijection, which associates an odd to an even number and an even to an odd.
Therefore we keep the same proportion of even and odd number. If both number in each pair has
the same Jacobi Symbol, we can conclude that the Jacobi Symbol of Me has no incident on the
proportion.

3.3 MapleTM

Finding a counter example should be enough to prove that it is false with the Jacobi Symbol
-1.

4 Goldwasser-Micali
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