
Cryptography & Data Security - Comp 547

Assignment 1

Maxime CHAMBREUIL
maxime.chambreuil@mail.mcgill.ca

Contents
1 Exercise 1 1

1.1 Finding u1 . 2
1.2 Finding u2 and u3 . 2

2 Exercise 2 : From Brassard-Bratley’s book 3
2.1 Proof about rootLV algorithm . 3
2.2 Number of choices . 3

3 Exercise 3 3

4 Exercise 4 : Jacobi Symbol Algorithm 3
4.1 Notations . 3
4.2 If a ≤ 1 then return a . 4
4.3 a is odd and a ≡ n ≡ 3 (mod 4) . 4
4.4 a is odd and (a ≡ 1 (mod 4) or n ≡ 1 (mod 4)) . 4
4.5 a is even and n ≡ ±1 (mod 8) . 4
4.6 a is even and n 6≡ ±1 (mod 8) . 5
4.7 Size of |a|+ |n| after 2 recursions . 5

5 Exercise 5 : MAPLETM 5
5.1 pqsqrt function . 5
5.2 Picking p and q . 6
5.3 Picking y and z . 6
5.4 Square root of x, xy, xz, xyz . 6

6 Bibliography 7
6.1 Chinese Remainder theorem . 7

1 Exercise 1

x ≡ 13 (mod 35)
x ≡ 11 (mod 36)
x ≡ 23 (mod 37)

To use the Chinese Remainder Theorem 1, we have to check 35, 36 and 37 are primes 2 by 2,
by decomposing them and look for a common factor :

1cf Bibliography

September 25, 2003 http://www.maxime-chambreuil.fr.st 1

Cryptography & Data Security - Comp 547

35 = 5× 7
36 = 22 × 32

37 = 37

So we can use the Chinese Remainder Theorem, which tells us that x0 is the unique solution
of our problem :

x0 = u1(36× 37)13 + u2(35× 37)11 + u3(35× 36)23 + 35× 36× 37n

n, u1, u2, u3 ∈ Z
Now, our job now consists in finding ui.

1.1 Finding u1

As 35, 36 and 37 has no common factor, we can say that it exists 2 numbers u1 and u
′
1 which

enable us to write :
36× 37× u

′
1 + 35× u1 = 1

36× 37 = 1332 = 35× 38 + 2

35 = 2× 17 + 1

So

1 = 35− 2× 17
1 = 35− (1332− 35× 38)17
1 = 35(1 + 38× 17)− 17× 1332
1 = 35× 647− 17× 1332

We can conclude that
u1 = −17

1.2 Finding u2 and u3

By repeating the same process but with adapting the numbers we find that u2 = −1 :

1 = 36× 36− (35× 37)

and u3 = −18 :

1 = 37× (1 + 34× 18)− 18(35× 36)

Finally,

x = −17(36× 37)13− (35× 37)11− 18(35× 36)23 + (35× 36× 37)n
x = −294372− 14245− 521640 + 46620n

x = 46620n− 830257
x = 46620(n− 17)− 37717
x = 46620(n− 18) + 8903

In conclusion, the lowest solution to our problem is :

x = 8 903

September 25, 2003 http://www.maxime-chambreuil.fr.st 2

Cryptography & Data Security - Comp 547

2 Exercise 2 : From Brassard-Bratley’s book

2.1 Proof about rootLV algorithm

The property we have to prove is :

rootLV finds
√

x⇐⇒ rootLV chooses a, that gives the key to
√

x.

I assume that you have the rootLV algorithm with you. Let us begin with the left hand side :

rootLV finds
√

x ⇐⇒ a2 ≡ x mod p or c = 0

⇐⇒ p|a2 − x or (a +
√

x)
p−1
2 ≡ d

√
x mod p

⇐⇒ (
a2 − x

p
) = 0 or (a +

√
x)

p−1
2 ≡ d

√
x mod p

Thanks to the hand out from the book, we know that if a+
√

x is put to the power of p−1
2 , then

its legender symbol is 1 or - 1. The hand out tell us also that if (a+ b) belongs to QRp (respectively
QNRp), then (a− b) belongs to QNRp (respectively QRp). We can generalize that idea by saying
that (a+

√
x

p)(a−√x
p) = −1. So our proof goes on :

rootLV finds
√

x ⇐⇒ (
a2 − x

p
) = 0 or (

a +
√

x

p
)(

a−√x

p
) = −1

⇐⇒ (
a2 − x

p
) = 0 or (

a2 − x

p
) = −1

⇐⇒ (a2 − x) mod p 6∈ QRp

rootLV finds
√

x ⇐⇒ rootLV chooses a, that gives the key to
√

x

2.2 Number of choices

3 Exercise 3

4 Exercise 4 : Jacobi Symbol Algorithm

4.1 Notations

(
1
n

) = 1 (1)

(
ab

n
) = (

a

n
)(

b

n
) (2)

(
a

n
) = (

a mod n

n
) (3)

With n odd

(
−1
n

) = (−1)
n−1

2 (4)

(
2
n

) = (−1)
n2−1

8 (5)

With a and n odd and gcd(a,n) = 1

(
−a

n
)(

n

a
) = (−1)

(n−1)(a−1)
4 (6)

September 25, 2003 http://www.maxime-chambreuil.fr.st 3

Cryptography & Data Security - Comp 547

4.2 If a ≤ 1 then return a

a = 1 ⇒ (
1
n

) = 1 = a (1)

a = 0 ⇒ (
0
n

) = 0 = a Definition of Legendre symbol

So we have to return a.

4.3 a is odd and a ≡ n ≡ 3 (mod 4)

With (6), we have :

(
a

n
) = (

n

a
)× (−1)

(n−1)(a−1)
4

As a ≡ n ≡ 3 (mod 4), we have also :
{

a = 4m + 3
n = 4p + 3 ⇒

{
a− 1 = 4m + 2
n− 1 = 4p + 2

⇒ (a− 1)(n− 1)
4

=
(4m + 2)(4p + 2)

4
= 2(2mp + p + m) + 1

which is odd. So we obtain :

(
a

n
) = −(

n

a
) = −(

n mod a

a
) (3)

4.4 a is odd and (a ≡ 1 (mod 4) or n ≡ 1 (mod 4))

If a ≡ 1 (mod 4) and n ≡ 3 (mod 4), then :
{

a− 1 = 4m
n− 1 = 4p + 2 ⇒ (a− 1)(n− 1)

4
=

4
4
× (m(4p + 2)) = 2(2mp + m)

which is even, so :

(
a

n
) = +(

n mod a

a
)

The process would be exactly the same if (a ≡ 3 (mod 4) and n ≡ 1 (mod 4)) or if (a ≡ 1
(mod 4) and n ≡ 1 (mod 4)), we would obtain the same result :

(
a

n
) = +(

n mod a

a
)

4.5 a is even and n ≡ ±1 (mod 8)

a is even so we can use (2) and then (5) :

(
a

n
) = (

a
2

n
)(

2
n

) = (
a
2

n
)(−1)

(n2−1)
8

As n ≡ ±1 (mod 8), we can deduct from it that :
{

n = 8m + 1
n = 8p− 1 ⇒

{
n2 = (8m + 1)2 = 64m2 + 16m + 1 = 8(8m2 + 2m) + 1
n2 = (8p− 1)2 = 64p2 − 16p + 1 = 8(8p2 − 2p) + 1

⇒
{

n2−1
8 = 8m2 + 2m = 2(4m2 + m)

n2−1
8 = 8p2 − 2p = 2(4p2 − p)

September 25, 2003 http://www.maxime-chambreuil.fr.st 4

Cryptography & Data Security - Comp 547

So n2−1
8 is always even and we can say that :

(
a

n
) = +(

a
2

n
)

4.6 a is even and n 6≡ ±1 (mod 8)

n is odd, n 6= ±1 (mod 8), n 6= 3 (mod 8) because we are in the case where n 6= 3 (mod 4),
so n ≡ 5 (mod 8), therefore :

n = 8p + 5 ⇒ n2 − 1 = (64p2 + 80p + 25)− 1 = 8(2(4p2 + 5p + 1) + 1)

⇒ n2 − 1
8

= 2(4p2 + 5p + 1) + 1

So n2−1
8 is odd and as a consequence, we have :

(
a

n
) = −(

a
2

n
)

To conclude, we can say that we have demonstrated the Jacobi algorithm using the 6 proper-
ties.

4.7 Size of |a|+ |n| after 2 recursions

When we compute Jacobi(a , n), we obtain 2 different results after one recursion : Jacobi(n mod
a , a) and Jacobi(a

2 , n) and their size are :

|n mod a|+ |a| and |a
2
|+ |n|

As in the second case, a is divided by 2, we won’t develop this case anymore, which answers al-
ready the condition. After one more recursion of the first case, we obtain : Jacobi(a mod (n mod a)
, n mod a) and Jacobi(n mod a

2 , a) and their size are :

|a mod (n mod a)|+ |n mod a| and |n mod a

2
|+ |a|

As we did before, we will not study the second case because of the division by 2, which make
us sure that the size of bits has decreased by at least one bit. |a mod (n mod a)| is more interesting,
indeed we have to prove that this term is lower than a

2 . The only thing I manage to prove is that :

a mod (n mod a) ≤ n mod a ≤ a

5 Exercise 5 : MAPLETM

5.1 pqsqrt function

with(numtheory);
pqsqrt := proc(x,p,q)

if (isprime(p) and isprime(q)) then
return msqrt(x,p*q):

else
return "FAIL":

end if;
end:

September 25, 2003 http://www.maxime-chambreuil.fr.st 5

Cryptography & Data Security - Comp 547

5.2 Picking p and q

p := 4:
q := 4:

while not isprime(p) and not isprime(q) do

gen := rand(10ˆ100..10ˆ101-1):

p := gen():
q := gen():

p := (p + 1260067572*10ˆ101)*100 + 1:
q := (q + 1260067572*10ˆ101)*100 + 3:

end do:
n := p*q:

I obtain :

p = 12600675727960954914820838078551529932481993458352289581
333524269432568502323375087369335569531803585309410225401

q = 12600675722629834352365520254950064668177206220038799019
040656955832400806617232009781633045381813165864498513403

n = 15877702873404861959560773088080216984032524428921977151
926279897889170923604402076445175905300463193910071541381519
356741772055489162257525600401562241625195382686727249506235
8474546321084979176747938718089833810851649549603

5.3 Picking y and z

with(numtheory):
getTwoQNR := proc(n,y,z)

y := rand();
z := rand();

while (jacobi(y,n) <> 1 and jacobi(z,n) <> -1) do

y := rand();
z := rand();

end do;

return y:
return z:

end:

I do not understand how we can find a QNR element with a jacobi symbol equals to 1. Any-
way, this code does not work : the loop does not stop when it should.

5.4 Square root of x, xy, xz, xyz

x := 1234567890:

September 25, 2003 http://www.maxime-chambreuil.fr.st 6

Cryptography & Data Security - Comp 547

i := 0:

while x <> 1234567990 do

sqx := Vector([sqx,pqsqrt(x,p,q)]):
sqxy := Vector([sqxy,pqsqrt(x*y,p,q)]):
sqxz := Vector([sqxz,pqsqrt(x*z,p,q)]):
sqxyz := Vector([sqxyz,pqsqrt(x*y*z,p,q)]):
x := x+1:

end do;

I did not manage to store all the data along the iteration, so i cannot generate the required
table.

6 Bibliography

6.1 Chinese Remainder theorem

• http://www.sciences-en-ligne.com/momo/chronomath/chrono1/Gauss.html

• http://www.les-mathematiques.net/b/a/d/node11.php3

• http://perso.club-internet.fr/orochoir/Maths/chinois.htm

September 25, 2003 http://www.maxime-chambreuil.fr.st 7

