Assignment 4

Maxime CHAMBREUIL maxime.chambreuil@mail.mcgill.ca

Contents

1 Expected value 1
2 Utility 2
2.1 Expected value 2
2.2 Personal investment 2
2.3 Expected utility 2
3 Markov Decision Processes 2
4 Programming questions: Monte Carlo 3
4.1 Implementation 3
4.2 Results 3

1 Expected value

The formulae is:

$$
E(X)=\sum_{i=1}^{n} p_{i} X_{i}
$$

So for 10 questions we have $(0,1)$ with a probability $\left(\frac{4}{5}, \frac{1}{5}\right)$ and the expected value is:

$$
E=10 \times\left(1 \times \frac{1}{5}+0 \times \frac{4}{5}\right)=2
$$

With ($-0,5,1$), we obtain:

$$
E=10 \times\left(1 \times \frac{1}{5}-0,5 \times \frac{4}{5}\right)=-2
$$

The best of action is to not answer: the gain would be zero and it is better than -2 .
With $k=1$, we have ($-0,5,1$) with a probability $\left(\frac{3}{4}, \frac{1}{4}\right)$ and the expected value is:

$$
E=10 \times\left(1 \times \frac{1}{4}-0,5 \times \frac{3}{4}\right)=-\frac{5}{4}
$$

With $\mathrm{k}=2$, we have $(-0,5,1)$ with a probability $\left(\frac{2}{3}, \frac{1}{3}\right)$ and the expected value is:

$$
E=10 \times\left(1 \times \frac{1}{3}-0,5 \times \frac{2}{3}\right)=0
$$

With $\mathrm{k}=3$, we have $(-0,5,1)$ with a probability $\left(\frac{1}{2}, \frac{1}{2}\right)$ and the expected value is:

$$
E=10 \times\left(1 \times \frac{1}{2}-0,5 \times \frac{1}{2}\right)=\frac{5}{2}
$$

2 Utility

2.1 Expected value

The formulae is:

$$
E(X)=\sum_{i=1}^{n} p_{i} X_{i}
$$

The probability to win $2^{n} \$$ is to have ($\mathrm{n}-1$) tails and then a head, this arrives with a probability $\left(\frac{1}{2}\right)^{n-1} \times \frac{1}{2}=\left(\frac{1}{2}\right)^{n}$. So for all n, we have:

$$
E=\sum_{n=1}^{+\infty}\left(\frac{1}{2}\right)^{n} \times 2^{n}=\sum_{n=1}^{\infty} 1=+\infty
$$

2.2 Personal investment

I would personnally pay $2 \$$ to play this game, then I cannot lose anything. Moreover, I think that the first head will generally happen in the first 3 tosses, so it is not worth paying more.

2.3 Expected utility

The formulae is:

$$
E U=\sum_{n=1}^{\infty} p_{n} U_{n}
$$

So we have:

$$
\begin{gathered}
E U=\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n} \times\left(a \log _{2}(n)+b\right)=\sum_{n=1}^{\infty}\left(\frac{a}{2^{n}} \log _{2}(n)+\frac{b}{2^{n}}\right) \\
E U=a \sum_{n=1}^{\infty} \frac{\log _{2}(n)}{2^{n}}+b \sum_{n=1}^{\infty} 2^{-n}=a \sum_{n=1}^{\infty} 2^{-n} \log _{2}(n)+b\left(\frac{1}{2} \cdot \frac{1-\left(\frac{1}{2}\right)^{+\infty}}{1-\frac{1}{2}}\right) \\
E U=a \sum_{n=1}^{\infty} 2^{-n} \log _{2}(n)+b
\end{gathered}
$$

3 Markov Decision Processes

The definition of the problem using the Markov Decision Processes is:

- States: House sold, House not sold
- Actions: Sell the house, Keep the house for the next day
- Reward: w_{j} if the house is sold, -c if the house is kept

Action: keep
Reward: -c
Proba: Pj+1
$W j+1=W j-C$

Action: Sell
Not
Sold
Reward: Wj Proba: 1-P j+1

4 Programming questions: Monte Carlo

4.1 Implementation

To implement the Monte Carlo, I have generated all my possible move. For each move, I have generated all the possible move of the opponent. For each of his move, I have evaluated the board as follows:

- I have summed all the distance between the middle of the board and my dies: $D_{m y}$
- I have summed all the distance between the middle of the board and the opponent dies: $D_{\text {opp }}$
- I have substracted these values: $D_{m y}-D_{o p p}$
- I have average this quantity for all the possible move of the opponent: $\frac{D_{m y}-D_{o p p}}{N}$

I finally choose the move with the minimum average.

4.2 Results

My Monte Carlo player has played against the Random player and the Minimax player, he has always won. I can even say that my Monte Carlo player is better than me!

