
Artificial Intelligence - Comp 424

Assignment 1

Maxime CHAMBREUIL
maxime.chambreuil@mail.mcgill.ca

Contents
1 Exercise 1 : Uninformed search 1

2 Exercise 2 : Uninformed/informed search 2
2.1 Optimality of iterative lengthening search (ILS) . 2
2.2 Uniform tree . 2
2.3 Step costs . 2

3 Exercise 3 : Informed search 2
3.1 w . 3
3.2 w = 0 . 3
3.3 w = 1 . 3
3.4 w = 2 . 3

4 Exercise 4 : Heuristics 3
4.1 h1 + h2 . 3
4.2 h1+h2

2
. 4

4.3 |h1 − h2| . 4
4.4 h1 × h2 . 4
4.5 2× h1 . 4
4.6 h1

2
. 4

4.7 min(h1,h2) . 5
4.8 max(h1,h2) . 5
4.9 h1 + 2h2 . 5
4.10 min(h1,2h2) . 5

5 Exercise 5 : Genetic algorithms 5
5.1 The fitness function . 5
5.2 Player representation . 5
5.3 Operators . 5

6 Exercise 6 : Search/constraint satisfaction 5
6.1 General Search Problem . 5
6.2 Constraint Satisfaction Problem . 6
6.3 Conclusion . 6

7 Exercise 7 : Constraint satisfaction 6
7.1 First representation : Gathering . 6
7.2 Second representation : Separating . 6

1 Exercise 1 : Uninformed search

a) Considering a node n, if his successor are 2n and 2n+1, we can say that we traverse a binary
tree in width. So the portion of the state space from state 1 to state 15 is :

September 22, 2003 http://www.maxime-chambreuil.fr.st 1

Artificial Intelligence - Comp 424

1

8

2

9 10 11

5

12 13

6

14 15

7

3

4

2*1=2 2*1+1=3

2*2=4 2*2+1=5 ...

Figure 1: State tree from 1 to 15

b) We assume now, that the goal state is state 11. Here are the list of nodes that will be expanded
during the process of differents algorithms :

• Breadth-first search : First, we enqueue 1 (Queue=1). Then we remove 1 from the queue, 1 is
not a goal state. Therefore we had his children 2 and 3 to the end of the queue (Queue=2,3).
After, we expand 2 and enqueue 4 and 5 (Queue=3,4,5). We go on this procedure until we
remove 11 from the queue (Queue=12,13,14,15). 11 is the goal state, so we stop here to ob-
tain the following list :

1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11

• Depth-limited search (L=3) : First, we enqueue 1 (Queue=1 and L=0). Then we remove 1
from the queue, 1 is not a goal state. Therefore we had his children 2 and 3 to the front of
the queue (Queue=2,3 and L=1). After, we expand 2 and enqueue 4 and 5 (Queue=4,5,3
and L=2). Afterwards, we expand 4 and add 8 and 9 to the queue (Queue=8,9,5,3 and
L=3). We expand 8 and 9, which are not the goal state, have no children and would make
L greater than 3. So we then expand 5 (Queue=3 and L=2) and add 10 and 11 to the queue
(Queue=10,11,3 and L=3). At this step, we can easily understand that the expanding list is :

1 - 2 - 4 - 8 - 9 - 5 - 10 - 11

• Iterative deepening : We have to repeat the previous procedure with :

L = 0 : 1
L = 1 : 1 - 2 - 3
L = 2 : 1 - 2 - 4 - 5 - 3 - 6 - 7
L = 3 : 1 - 2 - 4 - 8 - 9 - 5 - 10 - 11

2 Exercise 2 : Uninformed/informed search

2.1 Optimality of iterative lengthening search (ILS)

Proof by contradiction : Assume that ILS returns Gret so that g(Gret) > g(Gopt). During an
iteration i, g(Gopt) will be used as the limit and Gopt will be enqueued and found before Gret.

September 22, 2003 http://www.maxime-chambreuil.fr.st 2

Artificial Intelligence - Comp 424

Indeed, the algorithm use a limit function that keep increasing so Gret will be discarded during
the iteration i and g(Gret) will be used as the limit after.

2.2 Uniform tree

During each iteration, one level will be discarded at the same time, because all nodes at this
level has the same value. In the worst case, the goal state is at the level d and so, we will have to
make d iterations to find it. The algorithm has a O(d) complexity.

2.3 Step costs

In the worst case, there is no 2 nodes, which have the same parent, with the same cost. So
that the cost of each node will be used as the limit in the next iteration. As we have bd nodes, the
complexity is O(bd)

3 Exercise 3 : Informed search

f(n) = (2− w)g(n) + wh(n)

3.1 w

w is just regulating the weight of g(n) and h(n) in the f(n) function.

So f(n) is optimum for w = 1.

3.2 w = 0

f(n) = 2g(n)

So the algorithm is analog to an uniform cost search.

3.3 w = 1

f(n) = g(n) + h(n)

So the algorithm is analog to an heuristic search.

September 22, 2003 http://www.maxime-chambreuil.fr.st 3

Artificial Intelligence - Comp 424

3.4 w = 2

f(n) = 2h(n)

So the algorithm is analog to a best-first search.

4 Exercise 4 : Heuristics

Let h∗(n) be the shortest path from n to any goal state. We will consider the notation h∗ as
h∗(n), whatever n. As h1 and h2 are admissible heuristics, we know that h1 < h∗ and h2 < h∗.

4.1 h1 + h2

So h1 + h2 ≤ 2× h∗

Mathematically, we can conclude that h1 + h2 is admissible and is a better heuristic than h1

or h2, but only if h1 ≤ h∗ − h2. In the field of Artificial Intelligence, h∗ is unknown (if it is, why
not use it, as it is the best). Therefore we cannot test this condition and so, it is not an admissible
heuristic whatever our initials heuristics.

4.2 h1+h2

2

We can pursue the previous calculus :

h1 + h2 ≤ 2× h∗

h1 + h2

2
≤ h∗

To conclude, we can say that h1+h2
2 is an admissible heuristic. We can easily understand geo-

metrically that it is the center of h1 and h2. So it is just the mean of our 2 initials heuristics and
does not provide a better heuristic.

4.3 |h1 − h2|
We know that :

0 ≤ h1 ≤ h∗

0 ≤ h2 ≤ h∗

−h∗ ≤ −h2 ≤ 0

So,
0− h∗ ≤ h1 − h2 ≤ h∗ − 0

|h1 − h2| ≤ h∗

As a conclusion, |h1 − h2| is an admissible heuristic and represent the distance between our
initials heuristics. This is not a useful heuristic, as we just have information about the relative
position of h1 and h2. The maximum of these latters would be better.

September 22, 2003 http://www.maxime-chambreuil.fr.st 4

Artificial Intelligence - Comp 424

4.4 h1 × h2

h1 × h2 ≤ h∗
2

Then we can discuss the result depending on the value of each variable (admissible if h1 ≤
h∗

2

h2
). For the same reason as (a), we can conclude that it is not an admissible heuristic whatever

h1 and h2.

4.5 2× h1

2× h1 ≤ 2× h∗

So it is a better heuristic in the mathematical sens if h1 ≤ h∗
2 , but it is not in the AI sens (Refer

to (a) and (d)).

4.6 h1

2

h1

2
≤ h∗

2
≤ h∗

So h1
2 is an admissible heuristic but is not useful as it takes us further from h∗

4.7 min(h1,h2)

min(h1,h2) is h1 or h2, so min(h1,h2) is an admissible heuristic but it is not useful as it does not
create a new better heuristic and take the worst of the ones we already have.

4.8 max(h1,h2)

max(h1,h2) is h1 or h2, so max(h1,h2) is an admissible heuristic but it is not useful as it does
not create a new better heuristic. Fortunately, it takes the best of the ones we already have.

4.9 h1 + 2h2

h1 + 2h2 ≤ 3h∗

It is the same problem as in 4.1, 4.4 and 4.5 : The admissibility of h1+2h2 is up to some stronger
conditions (h1 ≤ h∗ − h2).

4.10 min(h1,2h2)

min(h1, 2h2) =
{

h1 → admissible
2h2 ≤ h1 ≤ h∗ → admissible

So min(h1,2h2) is an admissible heuristic which can create a new heuristic 2h2. Unfortunately,
h1 remains a better choice. This operation is useless in our research of a better heuristics by
combining 2 known ones.

5 Exercise 5 : Genetic algorithms

5.1 The fitness function

The fitness for a chess player can be the number of won match.

September 22, 2003 http://www.maxime-chambreuil.fr.st 5

Artificial Intelligence - Comp 424

5.2 Player representation

A simple representation can be a list of symbols : 0 for a defeat and 1 for a victory.

5.3 Operators

The crossover would be adding a symbol to the string (a new match is played between 2
individuals) and the mutation would be permuting 2 symbols.

6 Exercise 6 : Search/constraint satisfaction

6.1 General Search Problem

• State space : Grid with blanks, letters and shaded cases.

• Operator : Assign a letter to a blank case.

• Goal state : Test if all words in the grid are in the dictionnary.

• Heuristic : Inverse of number of possible words in the dictionnary, which can complete the
grid.

6.2 Constraint Satisfaction Problem

• Variables : Set of cases for a word.

• Domain : Dictionnary.

• Constraints : Words belongs to the dictionnary.

6.3 Conclusion

To determine the best representation, let us take a look at the complexity. We have a grid of
n cases, m words in the dictionnary, the alphabet has 26 letters and we have to place p words in
the grid. Concerning the general search problem, we have a complexity of (26n ×m). As for the
constraint satisfaction problem, we have (p × m). So we can say that the constraint satisfaction
problem is better that the general search problem.

7 Exercise 7 : Constraint satisfaction

7.1 First representation : Gathering

• Variables : Houses.

• Domain : A set, where an item is composed with a color, a nationality, a cigarette, a drink
and a pet.

• Constraints : Given by the exercise.

September 22, 2003 http://www.maxime-chambreuil.fr.st 6

Artificial Intelligence - Comp 424

7.2 Second representation : Separating

We can consider the problem with 5 different domains : color, nationality, cigarette, drink and
pet. For colors, the problem would be :

• Variables : Houses.

• Domain : red, yellow, blue, green, ivory.

• Constraints : Given by the exercise.

I think that the separating method is better, because as soon as we have assigned colors to
houses, we have information for the other domains and so the problem is solved quicker than by
testing everything in the same time.

September 22, 2003 http://www.maxime-chambreuil.fr.st 7

