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ABSTRACT 
With the growth of computer networking, electronic commerce, and web 
services, security of networking systems has become very important.  Many 
companies now rely on web services as a major source of revenue.  Computer 
hacking poses significant problems to these companies, as distributed attacks 
can render their cyber-storefront inoperable for long periods of time.  This 
happens so often, that an entire area of research, called Intrusion Detection, is 
devoted to detecting this activity.  We show that evidence of many of these 
attacks can be found by a careful analysis of network data.  We also illustrate 
that neural networks can efficiently detect this activity.  We test our systems 
against denial of service attacks, distributed denial of service attacks, and 
portscans.  In this work, we explore network based intrusion detection using 
classifying, self-organizing maps for data clustering and MLP neural networks 
for detection. 

INTRODUCTION 
Intrusion Detection attempts to detect computer attacks by examining data 

records observed by processes on the same network.  These attacks are typically 
split into two categories, host-based attacks and network-based attacks.  Host-
based attack detection routines normally use system call data from an audit-
process that tracks all system calls made on behalf of each user on a particular 
machine.  These audit processes usually run on each monitored machine.  
Network-based attack detection routines typically use network traffic data from 
a network packet sniffer (e.g., tcpdump).  Many computer networks, including 
the widely accepted Ethernet (IEEE 802.3) network, use a shared medium for 
communication.  Therefore, the packet sniffer only needs to be on the same 
shared subnet as the monitored machines. 

We believe that denial of service and other network-based attacks leave a 
faint trace of their presence in the network traffic data.  Ours is an anomaly 
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detection system that detects network-based attacks by carefully analyzing this 
network traffic data and alerting administrators to abnormal traffic trends.  It has 
been shown that network traffic can be efficiently modelled using artificial 
neural networks (Aussem et al, 2000; Casilari et al, 1998).  Therefore we use 
MLP neural networks to examine network traffic data.   

In our system, it becomes necessary to group network traffic together to 
present it to the neural network.  For this purpose, we use self-organizing maps, 
as they have been shown to be effective in novelty detection (Ypma and Duin, 
1997), automated clustering (Niggemann et al, 2001; Vesanto and Alhoniemi, 
2000), and visual organization (Kohonen, 1995). 

COMPARISON TO OTHER INTRUSION DETECTION SYSTEMS USING 
NEURAL NETWORKS 

There are a few different groups advocating various approaches to using 
neural networks for intrusion detection.  A couple of groups created keyword 
count based misuse detection systems with neural networks (Lippman and 
Cunningham, 1999; Ryan et al, 1998).  The data that they presented to the neural 
network consisted of attack-specific keyword counts in network traffic. Such a 
system is close in spirit to a host-based detection system because it looks at the 
user actions.  In a different approach, researchers created a neural network to 
analyze program behavior profiles instead of user behavior profiles (Ghosh et al, 
99).  This method identifies the normal system behavoir of certain programs, 
and compares it to the current system behavior.  Cannady (1998), developed a 
network-based neural network detection system in which packet-level network 
data was retrieved from a database and then classified according to nine packet 
characteristics and presented to a neural network.  This method is different from 
ours because Cannady proposed detection on a packet level, whereas we use a 
time-window method.  Our method allows us to generalize input further than 
Cannady’s method, enabling us to recognize longer multi-packet attacks.  In 
addition, because we are modelling the network traffic in our preprocessing 
steps, we only need to look at three packet characteristics to identify aggregate 
trends.  Self-Organizing Maps (SOMs) have also been used as anomaly intrusion 
detectors (Girardin and Brodbeck, 1998).  In that work,  a SOM was used to 
cluster and then graphically display the network data for the user to determine 
which clusters contained attacks. 

SYSTEM DESCRIPTION 
Our system is a modular network-based intrusion detection system that 

analyzes tcpdump data to develop windowed traffic intensity trends.  In our 
learning approach, some of our components need time to be trained on the  
traffic intensity before detection is possible. We call tjis phase an architectural 
learning period, because during this time we select machine ports for 
monitoring, determine the structure of the NN, train the SOM, and train the NN.  
Once these steps have been taken, the system can stop the learning phase and 
begin detection.  The system flow is depicted in Fig. 1.  The system reads in 
tcpdump data and sends it first to the preprocessing module which keeps 
statistics of the traffic intensity on a source by source basis in each time interval.  
At any given point, there can be many sources in communication with the 
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Figure 1: System Architecture and Data Flow Diagram 
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victim.  Therefore, simply grouping the information by sources will not create a 
uniform representation of data for the neural network.  To address this issue, we 
send the preprocessed source information, which contains the traffic intensity 
from a source to the target machine, to a clustering module which groups 
sources with similar traffic intensity trends together during the training phase.  
The number of thus created clusters is constant and established in the 
architectural learning phase.  When a source is assigned to a particular cluster, 
the source’s traffic intensity is simply combined with the traffic intensity of that 
cluster.  This is done at each time interval, allowing a source to be assigned to 
different clusters in different time intervals. This type of behavior-based 
clustering is desired because a machine may be used as an attack source in one 
time interval and as a normal source in the next one.  Once the traffic intensity is 
grouped into clusters, the group totals are first sent to the normalization module 
for formatting and then to the actual neural network to render a decision as to 
the likelihood of a pending attack. 

THE LEARNING PHASE AND NEURAL NETWORK STRUCTURE 
Prior to collecting and monitoring the network traffic trends, which we                   

believe holds the information revealing intrusions, we must first determine the 
neural network structure.  We present the current intensity of network traffic to 
the neural network in the form of the number of times a host is accessed through 
its’  different serivces across the network in a certain interval dt.  To allow a 
machine to differentiate one application’s traffic from another, hosts have up to 
216 or 65,536 ports to which or from which traffic travels (Stevens, 94).  
Monitoring all of these ports through a neural   network is unnecessary.  It is 
highly unlikely that all ports on a particular host are used at the same time.  
Therefore, we must establish which ports are important.  To determine the 
important ports to monitor and thus determine the architecture of our neural 
network, we introduced an architectural learning phase.  We first establish an 
architectural multiplier F, which is multiplied by the time interval dt to develop 
the length of our architectural learning phase.  We then observe the network 
traffic intensity for F * dt period of time, cataloging the number of times sources 
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access different ports on the target 
machine.  The number of packets  
received at the target machine in 
this period of time form a set A.  
The systems administrator defines 
for our architectural learning 
phase a list of known ports to 
watch (the set KP) and how many 
extra ports (ep) the algorithm can 
choose to add to the list.  Our 
system simply uses the ports given 
by the administrator KP and the 
top ep ports from the remaining 
most active ones in the observed 
traffic.  The final set of ports used 

is FINALSET = KP υ max(ep, A).  The process of determining the final set of 
ports to use is illustrated in Fig. 2 (the administrator requests the addition of two 
ports to FINALSET). Once we have determined the ports to monitor, the neural 
network structure can be established as having N * M input nodes in which N is 
the number of sources and M is the number of monitored ports (|FINALSET|).   

The following section will show the reason why  the sources are clustered 
for input to the neural network.  The first M nodes of the neural network input 
layer represent the total number of packets sent from the first source to the 
corresponding monitored port.  The next M nodes of the input layer receive the 
respective total numbers of packets for the second source in the same order as 
the first layer, and so forth.  An example of this architecture for four sources is 

given in Fig. 3.  In this example, the ports 
are the same as those chosen in Fig. 2.  If 
only three sources have communicated with 
the target machine, then the architecture 
would contain three sets of M nodes in the 
input layer. 

Once the neural network is created, the 
number of inputs it receives is fixed by its 
structure.  As mentioned before, the 
sources that we should monitor may change 
frequently from interval to interval.  At any 
given interval, the observed source activity 
could rise far above or sink far below the 
activity level of N sources used by the 
neural network in the previous interval.  To 
accommodate such changes, we cluster the 
sources based on time-windowed behavior 
and present the cluster totals to the neural 
network.  Once decided, the number of 
clusters remains the same. 

CLUSTERING TRAFFIC TRENDS 
Clustering network traffic has been shown 

Figure 3: Sample 
configuration of the neural 
network with four sources. 

Figure 2: Combining given ports with 
active ones to find the final set of ports 
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to be an effective way of classifying similar trends (Portnoy et al, 2001; 
Niggemann et al, 2001). To provide both a visual representation of the traffic 
intensity as well as a meaningful clustering technique, we use a SOM. 
Discussing the theory of self-organizing maps is beyond the scope of this paper; 
however, the details of our automated clustering implementation are provided 
below.  Our SOM contains a grid of neurons each possessing a weight vector of 
the length of |FINALSET|.  After training, the weight vectors essentially reflect 
the number of hits to a particular port in a certain time interval dt.  When 
determining the best match between an input vector x = [ξ1,ξ2,…,ξn] and the 
weight vectors mi = [µi1,µi2,…,µin], we use a simple Euclidean distance formula.  
Once the best match is found, the weights of the neurons are updated through 
standard SOM formulas with linearly decreasing learning and neighborhood 
functions (Kohonen 1995).  

To develop the clusters from the SOM, we compute a frequency value �  to 
count how many times a particular neuron and members of its neighborhood 
were chosen as the Best Matching Unit (BMU) during training.  The neurons 
with the highest frequency value ( � ), are selected to be centroids, the centers of 
clusters.  Our calculation of �  is shown in Eq. 1. 
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for all valid neurons, where: 
• freqi,j = number of times the neuron at position (i,j) was the BMU 
• reach  = the spacing we enforce between cluster centroids    
If our algorithm is given the number of clusters to generate (z), it simply 

chooses the z neurons with the highest �  and not adjacent to current centroids 
to be centroids of the z clusters.  In this context, the neuron at position (x1,y1) is 
adjacent to the neuron at position (x2,y2) if (x2 - reach <= x1 <= x2 + reach) and 
(y2 - reach <= y1 <= y2 + reach).  We have an algorithm for computing the 
number of clusters if it is not given a priori, but will not explain it here due to 
space limitations.  Developing the clusters is only done during the architectural 
learning phase.  After the learning phase, to determine to what cluster a source 
belongs in a particular time interval, we simply compute the BMU for the 
source’s traffic intensity and select the cluster which has the closest centroid. 

TEST RESULTS 
As pictured in Fig. 1, our system is built to run on either historical tcpdump 

binaries or from a real-time tcpdump process.  For testing purposes, we ran our 
system using tcpdump binaries from the DARPA 1999 training dataset 
(Lippman et al, 2000).  We had a great deal of trouble trying to get our neural 
network to detect all types of attacks simultaneously.  However, the neural 
network performed well when tested on individual types of attacks one at a time.  
Our training and testing in this area was limited however, because our dataset 
did not contain many instances of the same attack.  Table 1 shows some of our 
results where sshprocesstable is the name of a particular type of denial of service 
attack.  In Table 1, columns 2, 3, 4, and 5 respectively refer to the correct 
prediction of normal traffic intensity, the incorrect prediction of normal traffic 
intensity, the correct prediction of attack traffic intensity, and the incorrect 
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prediction of attack traffic intensity.  Testing of additional types of attacks are in 
progress. 
 Correct Normal 

Predictions 
False 
Negatives 

Correct Attack 
Predictions 

False 
Positives 

Union of All  
Attacks  

100% 0% 24% 76% 

Sshprocesstable 100% 0% 100% 0% 

Table 1: Current Results   

CONCLUSION 
      Many methods have been employed for intrusion detection.  However, 
modeling networking traffic for a simple representation to a neural network 
shows great promise, especially on an individual attack basis.  Also, using 
SOMs as a clustering method for MLP neural networks is an efficient way of 
creating uniform, grouped input for detection when a dynamic number of inputs 
are present.  Once trained, the neural network can make decisions quickly, 
facilitating real-time detection.  Neural Networks using both supervised and 
unsupervised learning have many advantages in analyzing network traffic and 
will be a continuing area of our research. 
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