
 1

NETWORK-BASED INTRUSION DETECTION USING NEURAL
NETWORKS

ALAN BIVENS
Computer Science
 bivenj@cs.rpi.edu

CHANDRIKA PALAGIRI
Computer Science
 palgac@cs.rpi.edu

RASHEDA SMITH

Computer Science
 smithr2@cs.rpi.edu

BOLESLAW SZYMANSKI
Computer Science

 szymansk@cs.rpi.edu

MARK EMBRECHTS
Decision Sciences & Eng. Systems

embrem@rpi.edu

Rensselaer Polytechnic Institute
Troy, New York 12180-3590

ABSTRACT
With the growth of computer networking, electronic commerce, and web
services, security of networking systems has become very important. Many
companies now rely on web services as a major source of revenue. Computer
hacking poses significant problems to these companies, as distributed attacks
can render their cyber-storefront inoperable for long periods of time. This
happens so often, that an entire area of research, called Intrusion Detection, is
devoted to detecting this activity. We show that evidence of many of these
attacks can be found by a careful analysis of network data. We also illustrate
that neural networks can efficiently detect this activity. We test our systems
against denial of service attacks, distributed denial of service attacks, and
portscans. In this work, we explore network based intrusion detection using
classifying, self-organizing maps for data clustering and MLP neural networks
for detection.

INTRODUCTION
Intrusion Detection attempts to detect computer attacks by examining data

records observed by processes on the same network. These attacks are typically
split into two categories, host-based attacks and network-based attacks. Host-
based attack detection routines normally use system call data from an audit-
process that tracks all system calls made on behalf of each user on a particular
machine. These audit processes usually run on each monitored machine.
Network-based attack detection routines typically use network traffic data from
a network packet sniffer (e.g., tcpdump). Many computer networks, including
the widely accepted Ethernet (IEEE 802.3) network, use a shared medium for
communication. Therefore, the packet sniffer only needs to be on the same
shared subnet as the monitored machines.

We believe that denial of service and other network-based attacks leave a
faint trace of their presence in the network traffic data. Ours is an anomaly

 2

detection system that detects network-based attacks by carefully analyzing this
network traffic data and alerting administrators to abnormal traffic trends. It has
been shown that network traffic can be efficiently modelled using artificial
neural networks (Aussem et al, 2000; Casilari et al, 1998). Therefore we use
MLP neural networks to examine network traffic data.

In our system, it becomes necessary to group network traffic together to
present it to the neural network. For this purpose, we use self-organizing maps,
as they have been shown to be effective in novelty detection (Ypma and Duin,
1997), automated clustering (Niggemann et al, 2001; Vesanto and Alhoniemi,
2000), and visual organization (Kohonen, 1995).

COMPARISON TO OTHER INTRUSION DETECTION SYSTEMS USING
NEURAL NETWORKS

There are a few different groups advocating various approaches to using
neural networks for intrusion detection. A couple of groups created keyword
count based misuse detection systems with neural networks (Lippman and
Cunningham, 1999; Ryan et al, 1998). The data that they presented to the neural
network consisted of attack-specific keyword counts in network traffic. Such a
system is close in spirit to a host-based detection system because it looks at the
user actions. In a different approach, researchers created a neural network to
analyze program behavior profiles instead of user behavior profiles (Ghosh et al,
99). This method identifies the normal system behavoir of certain programs,
and compares it to the current system behavior. Cannady (1998), developed a
network-based neural network detection system in which packet-level network
data was retrieved from a database and then classified according to nine packet
characteristics and presented to a neural network. This method is different from
ours because Cannady proposed detection on a packet level, whereas we use a
time-window method. Our method allows us to generalize input further than
Cannady’s method, enabling us to recognize longer multi-packet attacks. In
addition, because we are modelling the network traffic in our preprocessing
steps, we only need to look at three packet characteristics to identify aggregate
trends. Self-Organizing Maps (SOMs) have also been used as anomaly intrusion
detectors (Girardin and Brodbeck, 1998). In that work, a SOM was used to
cluster and then graphically display the network data for the user to determine
which clusters contained attacks.

SYSTEM DESCRIPTION
Our system is a modular network-based intrusion detection system that

analyzes tcpdump data to develop windowed traffic intensity trends. In our
learning approach, some of our components need time to be trained on the
traffic intensity before detection is possible. We call tjis phase an architectural
learning period, because during this time we select machine ports for
monitoring, determine the structure of the NN, train the SOM, and train the NN.
Once these steps have been taken, the system can stop the learning phase and
begin detection. The system flow is depicted in Fig. 1. The system reads in
tcpdump data and sends it first to the preprocessing module which keeps
statistics of the traffic intensity on a source by source basis in each time interval.
At any given point, there can be many sources in communication with the

 3

Figure 1: System Architecture and Data Flow Diagram

DARPA tcpdump
data files

Live tcpdump
data

is curr_time<F*<t

True, still
training

False, not
 training

Preprocessing

Cluster traffic

Normalization

NN decision expert

SOM, NN training

victim. Therefore, simply grouping the information by sources will not create a
uniform representation of data for the neural network. To address this issue, we
send the preprocessed source information, which contains the traffic intensity
from a source to the target machine, to a clustering module which groups
sources with similar traffic intensity trends together during the training phase.
The number of thus created clusters is constant and established in the
architectural learning phase. When a source is assigned to a particular cluster,
the source’s traffic intensity is simply combined with the traffic intensity of that
cluster. This is done at each time interval, allowing a source to be assigned to
different clusters in different time intervals. This type of behavior-based
clustering is desired because a machine may be used as an attack source in one
time interval and as a normal source in the next one. Once the traffic intensity is
grouped into clusters, the group totals are first sent to the normalization module
for formatting and then to the actual neural network to render a decision as to
the likelihood of a pending attack.

THE LEARNING PHASE AND NEURAL NETWORK STRUCTURE
Prior to collecting and monitoring the network traffic trends, which we

believe holds the information revealing intrusions, we must first determine the
neural network structure. We present the current intensity of network traffic to
the neural network in the form of the number of times a host is accessed through
its’ different serivces across the network in a certain interval dt. To allow a
machine to differentiate one application’s traffic from another, hosts have up to
216 or 65,536 ports to which or from which traffic travels (Stevens, 94).
Monitoring all of these ports through a neural network is unnecessary. It is
highly unlikely that all ports on a particular host are used at the same time.
Therefore, we must establish which ports are important. To determine the
important ports to monitor and thus determine the architecture of our neural
network, we introduced an architectural learning phase. We first establish an
architectural multiplier F, which is multiplied by the time interval dt to develop
the length of our architectural learning phase. We then observe the network
traffic intensity for F * dt period of time, cataloging the number of times sources

 4

access different ports on the target
machine. The number of packets
received at the target machine in
this period of time form a set A.
The systems administrator defines
for our architectural learning
phase a list of known ports to
watch (the set KP) and how many
extra ports (ep) the algorithm can
choose to add to the list. Our
system simply uses the ports given
by the administrator KP and the
top ep ports from the remaining
most active ones in the observed
traffic. The final set of ports used

is FINALSET = KP υ max(ep, A). The process of determining the final set of
ports to use is illustrated in Fig. 2 (the administrator requests the addition of two
ports to FINALSET). Once we have determined the ports to monitor, the neural
network structure can be established as having N * M input nodes in which N is
the number of sources and M is the number of monitored ports (|FINALSET|).

The following section will show the reason why the sources are clustered
for input to the neural network. The first M nodes of the neural network input
layer represent the total number of packets sent from the first source to the
corresponding monitored port. The next M nodes of the input layer receive the
respective total numbers of packets for the second source in the same order as
the first layer, and so forth. An example of this architecture for four sources is

given in Fig. 3. In this example, the ports
are the same as those chosen in Fig. 2. If
only three sources have communicated with
the target machine, then the architecture
would contain three sets of M nodes in the
input layer.

Once the neural network is created, the
number of inputs it receives is fixed by its
structure. As mentioned before, the
sources that we should monitor may change
frequently from interval to interval. At any
given interval, the observed source activity
could rise far above or sink far below the
activity level of N sources used by the
neural network in the previous interval. To
accommodate such changes, we cluster the
sources based on time-windowed behavior
and present the cluster totals to the neural
network. Once decided, the number of
clusters remains the same.

CLUSTERING TRAFFIC TRENDS
Clustering network traffic has been shown

Figure 3: Sample
configuration of the neural
network with four sources.

Figure 2: Combining given ports with
active ones to find the final set of ports

 5

to be an effective way of classifying similar trends (Portnoy et al, 2001;
Niggemann et al, 2001). To provide both a visual representation of the traffic
intensity as well as a meaningful clustering technique, we use a SOM.
Discussing the theory of self-organizing maps is beyond the scope of this paper;
however, the details of our automated clustering implementation are provided
below. Our SOM contains a grid of neurons each possessing a weight vector of
the length of |FINALSET|. After training, the weight vectors essentially reflect
the number of hits to a particular port in a certain time interval dt. When
determining the best match between an input vector x = [ξ1,ξ2,…,ξn] and the
weight vectors mi = [µi1,µi2,…,µin], we use a simple Euclidean distance formula.
Once the best match is found, the weights of the neurons are updated through
standard SOM formulas with linearly decreasing learning and neighborhood
functions (Kohonen 1995).

To develop the clusters from the SOM, we compute a frequency value � to
count how many times a particular neuron and members of its neighborhood
were chosen as the Best Matching Unit (BMU) during training. The neurons
with the highest frequency value (�), are selected to be centroids, the centers of
clusters. Our calculation of � is shown in Eq. 1.

∑
=

++−− 





+
+++

+=
reach

x

xjijxixjijxi
jiji x

freqfreqfreqfreq
freq

1

,,,,
,, 1

β , (1)

for all valid neurons, where:
• freqi,j = number of times the neuron at position (i,j) was the BMU
• reach = the spacing we enforce between cluster centroids
If our algorithm is given the number of clusters to generate (z), it simply

chooses the z neurons with the highest � and not adjacent to current centroids
to be centroids of the z clusters. In this context, the neuron at position (x1,y1) is
adjacent to the neuron at position (x2,y2) if (x2 - reach <= x1 <= x2 + reach) and
(y2 - reach <= y1 <= y2 + reach). We have an algorithm for computing the
number of clusters if it is not given a priori, but will not explain it here due to
space limitations. Developing the clusters is only done during the architectural
learning phase. After the learning phase, to determine to what cluster a source
belongs in a particular time interval, we simply compute the BMU for the
source’s traffic intensity and select the cluster which has the closest centroid.

TEST RESULTS
As pictured in Fig. 1, our system is built to run on either historical tcpdump

binaries or from a real-time tcpdump process. For testing purposes, we ran our
system using tcpdump binaries from the DARPA 1999 training dataset
(Lippman et al, 2000). We had a great deal of trouble trying to get our neural
network to detect all types of attacks simultaneously. However, the neural
network performed well when tested on individual types of attacks one at a time.
Our training and testing in this area was limited however, because our dataset
did not contain many instances of the same attack. Table 1 shows some of our
results where sshprocesstable is the name of a particular type of denial of service
attack. In Table 1, columns 2, 3, 4, and 5 respectively refer to the correct
prediction of normal traffic intensity, the incorrect prediction of normal traffic
intensity, the correct prediction of attack traffic intensity, and the incorrect

 6

prediction of attack traffic intensity. Testing of additional types of attacks are in
progress.
 Correct Normal

Predictions
False
Negatives

Correct Attack
Predictions

False
Positives

Union of All
Attacks

100% 0% 24% 76%

Sshprocesstable 100% 0% 100% 0%

Table 1: Current Results

CONCLUSION
 Many methods have been employed for intrusion detection. However,
modeling networking traffic for a simple representation to a neural network
shows great promise, especially on an individual attack basis. Also, using
SOMs as a clustering method for MLP neural networks is an efficient way of
creating uniform, grouped input for detection when a dynamic number of inputs
are present. Once trained, the neural network can make decisions quickly,
facilitating real-time detection. Neural Networks using both supervised and
unsupervised learning have many advantages in analyzing network traffic and
will be a continuing area of our research.

REFERENCES
Aussem, A., Mahul, A., and Marie, R., 2000, “Queueing Network Modelling with Distributed

Neural Networks for Service Quality Estimation in B-ISDN Networks,” Proceedings IEEE-
INNS-ENNS International Joint Conference on Neural Networks, Como, Italy, pp. 392-397.

Cannady, J., 1998, “Artificial Neural Networks for Misuse Detection,” Proceedings, National
Information Systems Security Conference (NISSC’98), October, Arlington, VA, pp. 443-456.

Casilari, E., Alfaro, A., Reyes, A., Diaz-Estrella, A., and Sandoval, F., 1998, “Neural modelling of
Ethernet traffic over ATM networks,” EANN ’98, June, Gibraltar, pp. 304-307.

Ghosh, A., Schwartzbard, A., and Shatz, M., 1999, “Learning Program Behavior Profiles for
Intrusion Detection,” in Proceedings First USENIX Workshop on Intrusion Detection and
Network Monitoring, Santa Clara, California, April 1999.

Girardin, L., and Brodbeck, D., 1998, “A Visual Approach or Monitoring Logs,” In Proceedings of
the 12th System Administration Conference (LISA ’98), Boston, MA, December, pp. 299-308.

Kohonen, T, 1995, “Self-Organizing Maps,” Springer Series, Springer-Verlang Berlin.
Lippmann, R., and Cunningham, R., 1999, “ Improving Intrusion Detection performance using

Keyword selection and Neural Networks, “ RAID Proceedings, Sept, West Lafayette, Indiana.
Lippman, R., Haines, J.., Fried, D., Korba, J., and Das, K., 2000, “The 1999 DARPA off-line

intrusion detection evaluation,” Computer Networks, 34, pp. 579-595.
Niggemann, O., Stein, B., and Tölle, J., 2001, “Visualization of Traffic Structures,” IEEE

International Conference on Communications, ICC 2001, vol. 5, pp. 1516 -1521.
Portnoy L., Eskin E., and Stolfo S. J., 2001, “ Intrusion Detection with Unlabeled Data using

Clustering,” In Proceedings of ACM CSS (DMSA-2001), Philadelphia, PA, Nov 5-8.
Ryan, J., Lin, M., and Mikkulainen,R., 1998, “ Intrusion Detection with Neural Networks,”

Advances in Neural Information Processing Systems, vol. 10, MIT Press.
Stevens, R., 1994, “TCP/IP Illustrated Volume 1: The protocols,” Addison-Wesley Publishing

Company, Reading, Massachusetts, vol. 1, pp. 12.
Vesanto, J., and Alhoniemi, E., 2000, "Clustering of the selforganizing map," IEEE Transactions on

Neural Networks, vol. 11, issue 3, pp 586-600.
Ypma, A., and Duin, R., 1997, “Novelty Detection using Self-Organizing Maps,” Progress in

Connectionist-Based Information Systems, vol. 2, pp 1322-1325.

